ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Enantioselective luminescence quenching ; Energy transfer ; Europium ; Blue copper proteins ; Circularly polarized light
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The dynamic quenching of the luminescence of racemic Eu(III)(pyridine-2,6-dicarboxylate=dpa)3 3– by the title proteins is investigated and the enantioselectivity of the proteins in the quenching of the Δ and Λ enantiomers of Eu(dpa)3 3– is determined. The two diastereomeric quenching rate constants pertaining to azurin (k q Δ=3.3×106, k q Λ=2.7×106 M–1 s–1, pH 7.2, ionic strength I=22 mM) are lower than for its Met→44Lys mutant (k q Δ=1.9×107, k q Λ=1.4×107 M–1 s–1, same pH and I), indicating that energy transfer occurs from Eu(dpa)3 3– to the Cu(II) centre when the luminophore is bound to the hydrophobic patch of the protein near residue 44. The enantioselectivity remains unaltered by the mutation: k q Δ/k q Λ=1.27±0.04, so Lys44 is probably not in direct contact with the Eu chelate. The I and pH dependence of k q indicate that the lysine residue interacts electrostatically with Eu(dpa)3 3–. For plastocyanin the quenching rates are of the order of 106 M–1 s–1; for amicyanin they are two orders of magnitude larger (k q Δ=12×107, k q Λ=11×107 M–1 s–1, pH 7.2, I=22 mM). The variation of k q is attributed to differences in the charge distribution on the proteins, which influences the binding of the luminophore to the protein surface. For amicyanin the anion binding site near Lys59 and Lys60 may be involved in the energy transfer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Amicyanin ; Paramagnetic NMR ; Metal substitution ; Azurin ; Electron transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The paramagnetic 1H NMR spectra of the Co(II) and Ni(II) substituted forms of the type 1 blue copper protein (cupredoxin) amicyanin have been assigned. This is the first such analysis of a cupredoxin, which has a distorted tetrahedral active site with the ligands provided by two histidines, a cysteine and a methionine. The isotropic shifts of the resonances in these spectra are compared with those of Co(II) and Ni(II) azurin. A number of interesting similarities and differences are found. The coordination of the metal by the two equatorial histidine ligands is very similar in both proteins. The interaction between the introduced metal and the thiolate sulfur of the equatorial cysteine ligand is enhanced in the amicyanin derivatives. Resonances belonging to the weak axial methionine ligand exhibit much larger shifts in the amicyanin derivatives, indicative of shorter M(II)-S(Met) distances. The presence of shorter axial M(II)-S(Met) and equatorial M(II)-S(Cys) distances in both Co(II) and Ni(II) amicyanin is ascribed to the absence of a second axially interacting amino acid at the active site of this cupredoxin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1327
    Keywords: Key words Azurin ; Cupredoxin ; Copper-cysteinate protein ; Resonance Raman spectroscopy ; Vibrational assignments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  In the redox center of azurin, the Cu(II) is strongly coordinated to one thiolate S from Cys 112 and two imidazole Ns from His 46 and 117. This site yields a complex resonance Raman (RR) spectrum with 〉20 vibrational modes between 200 and 1500 cm–1. We have investigated the effects of ligand-selective isotope replacements on the RR spectrum of Pseudomonas aeruginosa azurin to determine the relative spectral contribution from each of the copper ligands. Growth on 34S-sulfate labels the cysteine ligand and allows the identification of a cluster of bands with Cu–S(Cys) stretching character between 370 and 430 cm–1 whose frequencies are consistent with the trigonal or distorted tetrahedral coordination in type 1 sites. In type 2 copper-cysteinate sites, the lower ν (Cu–S) frequencies between 260 and 320 cm–1 are consistent with square-planar coordination. Addition of exogenous 15N-labeled imidazole or histidine to the His117Gly mutant generates type 1 or type 2 sites, respectively. Because neither the above nor the His46Gly mutant reconstituted with 15N-imidazole exhibits significant isotope dependence, the histidine ligands can be ruled out as important contributors to the RR spectrum. Instead, a variety of evidence, including extensive isotope shifts upon global substitution with 15N, suggests that the multiple RR modes of azurin are due principally to vibrations of the cysteine ligand. These are resonance-enhanced through kinematic coupling with the Cu–S stretch in the ground state or through an excited-state A-term mechanism involving a Cu-cysteinate chromophore that extends into the peptide backbone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1327
    Keywords: Key words Cytochrome c ; Cytochrome c-550 ; Alkaline transition ; Enantioselective luminescence quenching ; Lanthanide complexes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The pH dependence of the dynamic quenching of the luminescence from Tb(III) and Eu(III) tris(pyridine-2,6-dicarboxylate≡DPA) chelates by the title proteins is studied. For Tb(DPA)3 3– also the quenching by the Lys 14→Glu and Lys99→Glu mutants of cytochrome c-550 (cytc-550) is investigated. The rate constants for quenching of the electronically excited Λ and Δ enantiomers of the luminophore by equine cytochrome c show a sharp decrease upon increasing the pH from 7 to 10, which can be described phenomenologically by deprotonation of a single acidic group with pK a of 9.2±0.1 for Eu and 9.4±0.1 for Tb. These values are similar to that found for the alkaline transition of the protein. The alkaline conformer(s) of the protein at pH〉10 is found to be a very inefficient quencher of the lanthanide luminescence. For Tb, but not for Eu, a significant lowering of the degree of enantioselectivity (E q) in the quenching is found along with a reduction of the quenching rates. For cytc-550, the decrease of the quenching rate constants with increasing pH is described by pK a=9.8±0.1 and for the two mutants the same value is obtained. For the cytc-550 proteins the change of the quenching rates does not correlate with the alkaline transition, for which a pK a of 11.2 has been reported by other workers. For all proteins, the reduction of the quenching rates at high pH is ascribed to a reduction of the binding affinity of the excited lanthanide complex to the surface area of the protein near the exposed heme edge, caused by deprotonation of (presumably) several lysine residues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1327
    Keywords: Key words Azurin ; Zinc cytochrome c ; Electron transfer ; Site-directed mutagenesis ; Protein-protein orientation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  We study, by laser flash photolysis, the effects of ionic strength on the kinetics of the reaction 3Zncyt + az(II) → Zncyt+ + az(I), i.e., oxidative quenching of the triplet state of zinc cytochrome c by the wild-type form and the following three mutants of cupriazurin: Met44Lys, Met64Glu, and the double mutant Met44Lys/Met64Glu. Mutations in the hydrophobic patch of azurin significantly affect the reactivity of the protein with the triplet state of zinc cytochrome c. Dependence on the ionic strength of the bimolecular rate constant for the aforementioned reaction is analyzed by several electrosatic models. The two transition-state theories, Brønsted-Debye-Hückel and van Leeuwen theories, allow the best approximation to the experimental data when effective charges of the proteins are used. Protein-protein interactions are also analyzed in terms of local charges on the protein surfaces. The rate constants depend little on ionic strength, and the monopolar and dipolar electrostatic interactions between zinc cytochrome c and azurin are not well resolved. Semiquantitative analysis of electrostatic interactions indicates that azurin uses its hydrophobic patch for contact with zinc cytochrome c.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5001
    Keywords: Copper proteins ; Type 1 copper site ; Azurin ; Electron transfer ; Paramagnetic relaxation ; Spectroscopic probe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The relaxation enhancement caused by paramagnetic copper(II) is used to observe selectivelythe metal site of copper(I)-amicyanin by one- and two-dimensional NMR spectroscopy. Theparamagnetic effect is communicated to the diamagnetic protein through the electron self-exchange reaction in partially oxidised samples, and can be used for the selective detectionof protons around the metal. Relaxation-selective NMR pulse sequences, like super-WEFTand WEFT-NOESY, are used to achieve the desired selection of the signals. The spectraobtained show well-resolved signals corresponding to protons within a radius of∼7 Å from the metal, including almost all protons from the coordinated residues. A significant increasein resolution as well as selection of the most relevant part of the protein (close to the activecentre) are the principal advantages of this technique, which can be used to obtain specificinformation about the metal site in blue copper proteins, to assist in the assignment of theirNMR spectra and to determine functional properties like the electron self-exchange rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5001
    Keywords: G proteins ; guanine nucleotide exchange ; protein synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...