ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • poly(vinyl chloride)  (3)
  • Wiley-Blackwell  (3)
  • Göttingen: Ibero-Amerika-Inst. für Wirtschaftsforschung
  • Heidelberg: Springer
  • Springer Nature
  • 1995-1999  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 2387-2397 
    ISSN: 0887-624X
    Keywords: poly(vinyl chloride) ; nucleophilic substitution ; stereospecific mechanisms ; solvent influence ; microstructural sensitivity ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The nucleophilic substitution in poly(vinyl chloride) (PVC) with sodium benzenethiolate has been studied in two kinds of solvent differing in the molecular structure in the vicinity of the carbonyl group. From the evolution of the content of isotactic (mm), heterotactic (mr), and syndiotactic (rr) triads; and of mmmm, mmmr and rmmr isotactic pentads, in the unmodified parts of the polymer, as followed by 13C-NMR, it is unambiguously inferred that any chlorine but the central one of either the isotactic triad at mmr tetrads or the heterotactic triad at rmrr pentads is unreactive. Only a small fraction of mmr tetrads reacts occasionally by the central chlorine of its mr triad instead of the mm. Of those structures, the mmr, especially when located at the end of long isotactic sequences, proves to be highly reactive compared to the rmrr structure. By comparing quantitatively the microstructural changes with degree of substitution and taking into account that the reaction is of SN2 type, the mechanisms of substitution through the three foregoing reactive chlorines have been stated. They are found to be independent of the type of solvent and to account for all the changes in triad and pentad content as experimentally found. Instead, the solvent dependence of the ratio between the mmr- and rmrr-based processes of substitution is such that the depletion of mmr compared to that of rmrr structure may be controlled. The conformational sensitivity of this behavior is discussed on the basis of side work in our laboratory. As a whole, the results of the present work provide some original concepts as to the role of the tacticity dependent microstructure and the related local conformations in the chemical reactions of PVC. © 1996 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-624X
    Keywords: poly(vinyl chloride) ; stereoselective substitution ; FTIR vibration modes ; local configurational mechanisms ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The evolution of the ν C (SINGLE BOND) Cl bands of the infrared spectrum of a Bernoullian though slightly isotactic poly(vinyl chloride) (PVC), with both the degree of SN2 substitution reaction with sodium benzenethiolate, as studied earlier, and the increase of the nucleophile infrared bands, has been studied by FTIR spectroscopy. In a parallel way, the changes in the same bands, in particular those at 615 and 637 cm-1, presumably induced by SN2 substitution, have been estimated, theoretically, by comparing the sequential order and the number of the distinct conformationally sensitive vibration modes of C(SINGLE BOND)Cl bond, prior and after substitution, for a series of polymer sequences containing the reactive sites, namely the isotactic mmr tetrad and the heterotactic rmrr pentad, according to earlier work.The experimental behaviour of the νC(SINGLE BOND)Cl bands is found to be in close agreement with the theoretical expectations, thereby allowing two main conclusions to be drawn: (i) during the early stage going up to conversions of 10-12%, the reaction proceeds in a nearly exclusive manner, by the mmr and rmrr terminal of long isotactic and syndiotactic sequences, respectively; and (ii) any reaction event throughout the substitution process proves to be highly dependent upon the local environment in which each of the foregoing reactive structures finds itself. In summary, the local configurational nature of the mechanisms of analogous reactions of polymers is strongly suggested on the grounds of the results given herein. © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 1243-1255 
    ISSN: 0887-624X
    Keywords: poly(vinyl chloride) ; interactions ; carbonyl ; local conformations ; tacticity ; stereoselective substitution ; blends ; FT infrared spectroscopy ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The molecular interactions of poly(vinylchloride) (PVC) with some solvents [cyclohexanone (CH), methyl ethyl ketone (MEK) and N-methylpirrolidone (MP)], esters [dioctylphthalate (DOP) and butyl stearate (BuSt)], and polyesters [poly(ethylene adipate) (PEA) and poly(ε-caprolactone) (PCL)] have been investigated by FTIR spectroscopy. In all cases the band of the carbonyl group is found to shift to lower frequencies, but significant differences between the solvent and the esters, whether polymeric or not, are evidenced. For PVC-solvent systems, the shift proves to increase linearly as PVC/solvent ratio increases, what suggests that only a definite number of polymer sites is involved. From the slopes of the straight lines this effect of composition is shown to increase in the order MP 〈 MEK 〈 CH, i.e., as the basicity of the solvent decreases. In contrast, for the PVC-esters or polyester blends, a nonlinear behavior consisting of two distinct interaction processes, is obtained. The increase of shift as PVC/ester ratio increases is faster in the first process for all PVC-ester systems and it is particularly enhanced for BuSt and, to a lesser extent, for DOP. Instead, during the second process, that increase is of little significance for BuSt relative to DOP and PCL. These results account for the saturation of the polymer structures that are capable of interacting, at different rates depending on the type of ester. Besides, the whole number of those structures appears to be lower than in the case of solvents.The results are discussed on the ground of, on one side, the mechanism of nucleophilic substitution on PVC, in the same solutions and blends, which, as found previously, is of a stereospecific nature, and, on the other, the electron-donor-acceptor concept (EDA) and the hard-soft-acid-base concept (HSAB) as applied to both the interacting agents (solvents and esters) and the isotactic GTGT and GTTG- triad conformations as well as the heterotactic GTTT. In the light of the resulting conclusions it is suggested that: (i) the linear behavior shown by the solvents obeys the solvent ability to ensure a dynamic equilibrium between the two possible conformations of -mmr- sequence, i.e., GTGTTT and GTTG-TT, through the preferential interaction with the little likely GTTG- conformation, the content of which happens so to be constant as long as there are -mmr- sequences in solution; (ii) the nonlinear behavior of PVC-ester or polyester binary systems reveals a nonequilibrium situation and so the conformational change GTGTTT ⇒ GTTG-TT, which is highly hindered, will occur occasionally depending on the ester nature. This enables one to attribute the fast and the slow interaction processes to the permanent GTTG-TT conformations derived from the polymerization and to the same conformations formed as the result of the conformational changes, respectively.Strong support for the above novel finding that PVC … O=C interaction is of a local conformational nature is given by two additional investigations. First, a similar study with a PVC sample prepared at -50°C, shows that the carbonyl band shifts of CH and PCL are appreciably lower than those of PVC prepared at 70°C. The same holds for the blendof PCL with the latter PVC sample after substitution reaction (0.6%) at -15°C in CH with sodium benzenethiolate (NaBT). Since the PVC obtained at -50°C and the 0.6% substituted polymer exhibit a lower content of both permanent GTTG-TT conformations ad -mmr- sequence, these results agree with expectatins and confirm the above suggestions. Secondly, the changes in the C—Cl stretchign frequencies of PVC with increasing amounts of solvent or ester, as extensively studied, clearly indicate the occurrence of the aforementioned conformational change, and so they are consistent with our proposals as to the actual conformational nature of PVC…O—C interactions. © 1995 John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...