ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (1)
  • Wiley
  • 1995-1999  (1)
  • 1
    Publication Date: 1995-05-10
    Description: The transition from laminar to turbulent of the natural-convection flow inside a square, differentially heated cavity with adiabatic horizontal walls is calculated, using the finite-volume method. The purpose of this study is firstly to determine the dependence of the laminar-turbulent transition on the Prandtl number and secondly to investigate the physical mechanisms responsible for the bifurcations observed. It is found that in the square cavity, for Prandtl numbers between 0.25 and 2.0, the transition occurs through periodic and quasi-periodic flow regimes. One of the bifurcations is related to an instability occurring in a jet-like fluid layer exiting from those corners of the cavity where the vertical boundary layers are turned horizontal. This instability is mainly shear-driven and the visualization of the perturbations shows the occurrence of vorticity concentrations which are very similar to Kelvin-Helmholtz vortices in a plane jet, suggesting that the instability is a Kelvin-Helmholtz-type instability. The other bifurcation for Prandtl numbers between 0.25 and 2.0 occurs in the boundary layers along the vertical walls. It differs however from the related instability in the natural-convection boundary layer along an isolated vertical plate: the instability in the cavity is shear-driven whereas the instability along the vertical plate is mainly buoyancy-driven. For Prandtl numbers between 2.5 and 7.0, it is found that there occurs an immediate transition from the steady to the chaotic flow regime without intermediate regimes. This transition is also caused by instabilities originating and concentrated in the vertical boundary layers. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...