ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (2)
  • American Institute of Physics (AIP)  (1)
  • American Chemical Society (ACS)
  • Public Library of Science
  • 1995-1999  (3)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 5319-5331 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report measurements of the real and imaginary part of the dielectric constant of liquid water in the far-infrared region from 0.1 to 2.0 THz in a temperature range from 271.1 to 366.7 K. The data have been obtained with the use of THz time domain reflection spectroscopy, utilizing ultrashort electromagnetic pulses generated from a photoconductive antenna driven by femtosecond laser pulses. A Debye model with an additional relaxation time is used to fit the frequency dependence of the complex dielectric constants. We obtain a fast (fs) and a Debye (ps) relaxation time for the macroscopic polarization. The corresponding time correlation functions have been calculated with molecular dynamics simulations and are compared with experimental relaxation times. The temperature dependence of the Debye relaxation time is analyzed using three models: Transition state theory, a Debye–Stoke–Einstein relation between the viscosity and the Debye time, and a model stating that its temperature dependence can be extrapolated from a singularity of liquid water at 228 K. We find an excellent agreement between experiment and the two latter models. The simulations, however, present results with too large statistical error for establishing a relation for the temperature dependence. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-01-01
    Description: A field of vectors showing the average velocity of the surging glacier Osbornebreen, Svalbard, was determined by comparing sequential SPOT (Système pour l’Observation de la Terre) and Landsat thematic mapper images. Crevasses which developed during the initial phase of the surge in the winter of 1986–87 were tracked using a fast Fourier chip cross-correlation technique. A digital elevation model (DEM) was developed using digital photogrammetry on aerial photographs from 1990. This new DEM was compared with a map drawn in 1966. The velocity field could be almost entirely determined with 1 month separation of the images, but only partly determined with images 1 year apart, due to changes of the crevasse pattern. The velocity field is similar to that found for Kronebreen, a continuously fast-moving tidewater glacier. No distinct zones of compressive flow were present and the data gave no evidence of a compression zone/surge front traveling downstream. The velocity field, the rapid advance of the terminus and the development of transverse crevasses in the upper accumulation area within a 6 month period may indicate that the surge developed as a zone of extension starting near the terminus and propagating quickly upstream. The crevasse pattern in the images is therefore interpreted to be the result of the extension zone traveling upstream, and, as the whole glacier starts to slide, the crevasse pattern alters according to the bedrock topography.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-01-01
    Description: A field of vectors showing the average velocity of the surging glacier Osbornebreen, Svalbard, was determined by comparing sequential SPOT (Système pour l’Observation de la Terre) and Landsat thematic mapper images. Crevasses which developed during the initial phase of the surge in the winter of 1986–87 were tracked using a fast Fourier chip cross-correlation technique. A digital elevation model (DEM) was developed using digital photogrammetry on aerial photographs from 1990. This new DEM was compared with a map drawn in 1966. The velocity field could be almost entirely determined with 1 month separation of the images, but only partly determined with images 1 year apart, due to changes of the crevasse pattern. The velocity field is similar to that found for Kronebreen, a continuously fast-moving tidewater glacier. No distinct zones of compressive flow were present and the data gave no evidence of a compression zone/surge front traveling downstream. The velocity field, the rapid advance of the terminus and the development of transverse crevasses in the upper accumulation area within a 6 month period may indicate that the surge developed as a zone of extension starting near the terminus and propagating quickly upstream. The crevasse pattern in the images is therefore interpreted to be the result of the extension zone traveling upstream, and, as the whole glacier starts to slide, the crevasse pattern alters according to the bedrock topography.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...