ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (366)
  • Inorganic Chemistry  (134)
  • Wiley-Blackwell  (500)
  • Elsevier
  • Oxford University Press
  • 1995-1999  (431)
  • 1945-1949  (69)
  • 1
    ISSN: 0730-2312
    Keywords: reactive oxygen intermediates ; nucleotides ; glutathione ; redox state ; energy charge ; DNA damage ; apoptosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Despite its recognition as the most prevalent HIV associated cancer, speculation still abounds regarding the pathogenesis of AIDS-related Kaposi's sarcoma (AIDS-KS). However, it has been established that both cytokines, e.g. IL-6, and HIV-associated products, e.g., Tat, are integral in AIDS-KS cellular proliferation. Further, both experimental and clinical evidence is accumulating to link reactive oxygen intermediates (ROI) with both cytokine induction (primarily via nuclear factor-κB [NF-κB] dependent routes) as well as the subsequent cytokine, tumor necrosis factor α (TNFα) stimulation of HIV replication. Features of AIDS-KS patients, such as retention of phagocytes, presence of sustained immunostimulation, and a frequent history of KS lesions arising at traumatized sites, make oxidant stress a viable clinical factor in AIDS-KS development. Time course nucleotide profile analyses show that AIDS-KS cells have an inherent, statistically significant, biochemical deficit, even prior to oxidant stress, due to (1) a more glycolytic bioenergetic profile, resulting in lower levels of high energy phosphates (impairing capacity for glutathione [GSH] synthesis and DNA repair); (2) lower levels of NADPH (compromising the activities of GSSG reductase and peroxidase function of catalase); and (3) reduced levels of GSH (impeding both GSH peroxidase and GSH-S-transferases). Following exposure to physiologically relevant levels of H2O2 only the human microvascular endothelial cells (a putative AIDS-KS progenitor cell) responded with bioenergetic adaptations that reflected co-ordination of energy generating and cytoprotective pathways, e.g., retention of the cellular energy charge, increased NAD+, and an accentuation of the ATP, NADPH, and total adenine nucleotide differences relative to AIDS-KS cells. Also, some of the AIDS-KS strains retained intracellular GSSG subsequent to oxidant challenge, inviting the formation of deleterious protein mixed disulfides. While the results of our study address some AIDS-KS issues, they also raise an etiological question, i.e., Does the inability to tolerate oxidant stress arise in conjunction with AIDS-KS neoplastic development, or is it pre-existing in the population at risk? Regardless, use of antioxidant therapy (low risk/potentially high benefit) in both the “at risk” population as well as in those individuals with active disease may prove a useful preventative and/or treatment modality. © 1995 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 129 (1996), S. 1293-1300 
    ISSN: 0009-2940
    Keywords: Calculations, ab initio ; Aluminium compounds ; Heterometallic compounds ; Lithium compounds ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Reaction of the simple alane adduct [Me3Al · HN(CH2Ph)2] (2) with the lithium amide [(PhCH2)2NLi] leads to the formation of the mixed adduct [Me3Al · (PhCH2)2NLi · HN(CH2Ph)2] (1). The crystal structures of 1 and 2 are reported. Exhibiting a four-membered, mixed-metal, mixedanion ring-core, the structure of 1 is unusual in containing a monomeric lithium dibenzylamide fragment. Such fragments generally convert to aza-allyl derivatives, so its existence here can be attributed to the stabilising effect of the attached Me3Al ligand. Crystalline 2 adopts the classical, distorted-tetrahedral arrangement of simple monomeric alane adducts. Ab initio MO calculations on model systems show that mixed adduct formation from Me3Al and Me2NLi is exothermic, while further reaction to give Me2AlNMe2 and MeLi (i.e., complete transmetallation) is endothermic.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 79 (1946), S. 467-509 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 32 (1995), S. 318-331 
    ISSN: 0886-1544
    Keywords: cytoskeleton ; cyclic AMP ; vinculin ; E-cadherin ; ZO-1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In epithelial cells interactions between the actin cytoskeleton and cell-cell junctions regulate paracellular permeability and partcipate in morphogenesis. We have studied the relationship between supracellular morphology and actin-junction interactions using primary cultures of porcine thyroid cells grown either as three-dimensional follicles or as open monolayers. Regardless of morphology, thyroid cells assembled occluding and adhesive junctions containing ZO-1 and E-cadherin, respectively, and showed F-actin staining in apical microvilli and a perijunctional ring. In monolayers, actin stress fibers were also observed in the apical and basal poles of cells, where they terminated in the vinculin-rich zonula adherens and in cell-substrate focal adhesions, respectively. Surprisingly, we were unable to detect vinculin localization in follicular cells, which also did not form stress fibers. Immunoblotting confirmed significantly greater vinculin in triton-insoluble fractions from monolayer cells compared with follicular cells. Incubation of monolayers with 8 chloro(phenylthio)-cyclic AMP decreased the level of immunodetectable vinculin in the zonula adherens, indicating that junctional incorporation of vinculin was regulated by cyclic AMP. In monolayer cultures, cytochalasin D (1 μM) caused actin filaments to aggregate associated with retraction of cells from one another and the disruption of cell junctions. Despite morphologically similar perturbations of actin organization in follicular cultures treated with cytochalasin D, junctional staining of ZO-1 and E-cadherin was preserved and cells remained adherent to one another. We conclude that in cultured thyroid cells structural and functional associations between actin filaments and cellular junctions differ depending upon the supracellular morphology in which cells are grown. One important underlying mechanism appears to be regulation of vinculin incorporation into adhesive junctions by cyclic AMP. © 1995 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: Rous sarcoma virus ; chondrocytes ; matrix calcification ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Endochondral bone formation involves the progression of epiphyseal growth plate chondrocytes through a sequence of developmental stages which include proliferation, differentiation, hypertrophy, and matrix calcification. To study this highly coordinated process, we infected growth plate chondrocytes with Rous sarcoma virus (RSV) and studied the effects of RSV transformation on cell proliferation, differentiation, matrix synthesis, and mineralization. The RSV-transformed chondrocytes exhibited a distinct bipolar, fibroblast-like morphology, while the mock-infected chondrocytes had a typical polygonal morphology. The RSV-transformed chondrocytes actively synthesized extracellular matrix proteins consisting mainly of type I collagen and fibronectin. RSV-transformed cells produced much less type X collagen than was produced by mock-transformed cells. There also was a significant reduction of proteoglycan levels secreted in both the cell-matrix layer and culture media from RSV-transformed chondrocytes. RSV-transformed chondrocytes expressed two- to- threefold more matrix metalloproteinase, while expressing only one-half to one-third of the alkaline phosphatase activity of mock infected cells. Finally, RSV-transformed chondrocytes failed to calcify the extracellular matrix, while mock-transformed cells deposited high levels of calcium and phosphate into their extracellular matrix. These results collectively indicate that RSV transformation disrupts the preprogrammed differentiation pattern of growth plate chondrocytes and inhibit chondrocyte terminal differentiation and mineralization. They also suggest that the expression of extracellular matrix proteins, type II and type X collagens, and the cartilage proteoglycans are important for chondrocyte terminal differentiation and matrix calcification. J. Cell. Biochem. 69:453-462, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: mechanical loading ; gene expression ; osteopontin ; myeloperoxidase ; rats ; differential display ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The skeleton has the ability to alter its mass, geometry, and strength in response to mechanical stress. In order to elucidate the molecular mechanisms underlying this phenomenon, differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) was used to analyze gene expression in endocortical bone of mature female rats. Female Sprague-Dawley rats, approximately 8 months old, received either a sham or bending load using a four-point loading apparatus on the right tibia. RNA was collected at 1 h and 24 h after load was applied, reverse-transcribed into cDNA, and used in DDRT-PCR. Parallel display of samples from sham and loaded bones on a sequencing gel showed several regulated bands. Further analysis of seven of these bands allowed us to isolate two genes that are regulated in response to a loading stimulus. Nucleotide analysis showed that one of the differentially expressed bands shares 99% sequence identity with rat osteopontin (OPN), a noncollagenous bone matrix protein. Northern blot analysis confirms that OPN mRNA expression is increased by nearly 4-fold, at 6 h and 24 h after loading. The second band shares 90% homology with mouse myeloperoxidase (MPO), a bactericidal enzyme found primarily in neutrophils and monocytes. Semiquantitative PCR confirms that MPO expression is decreased 4- to 10-fold, at 1 h and 24 h after loading. Tissue distribution analysis confirmed MPO expression in bone but not in other tissues examined. In vitro analysis showed that MPO expression was not detectable in total RNA from UMR 106 osteoblastic cells or in confluent primary cultures of osteoblasts derived from either rat primary spongiosa or diaphyseal marrow. Database analysis suggests that MPO is expressed by osteocytes. These findings reinforce the association of OPN expression to bone turnover and describes for the first time, decreased expression of MPO during load-induced bone formation. These results suggest a role for both OPN and MPO expression in bone cell function. J. Cell. Biochem. 68:355-365, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0730-2312
    Keywords: chondrocytes ; cell culture ; mineralization ; calcospherites ; Ca and P mapping ; matrix vesicles ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Advances in the culture of mineralizing growth plate chondrocytes provided an opportunity to study endochondral calcification under controlled conditions. Here we report that these cultures synthesize large amounts of proteins characteristically associated with mineralization: type II and X collagens, sulfated proteoglycans, alkaline phosphatase, and the bone-related proteins, osteonectin and osteopontin. Certain chondrocytes appeared to accumulate large amounts of Ca2+ and Pi during the mineralization process: laser confocal imaging revealed high levels of intracellular Ca2+ in their periphery and X-ray microanalytical mapping revealed the presence of many Ca2+- and Pi-rich cell surface structures ranging from filamentous processes 0.14 ± 0.02 μm by 0.5-2.0 μm, to spherical globules 0.70 ± 0.27 μm in diameter. Removal of organic matter with alkaline sodium hypochlorite revealed numerous deposits of globular (0.77 ± 0.19 μm) mineral (calcospherites) in the lacunae around these cells. The size and spatial distribution of these mineral deposits closely corresponded to the Ca2+-rich cell surface blebs. The globular mineral progressively transformed into clusters of crystallites. Taken with earlier studies, these findings indicate that cellular uptake of Ca2+ and Pi leads to formation of complexes of amorphous calcium phosphate, membrane lipids, and proteins that are released as cell surface blebs analogous to matrix vesicles. These structures initiate development of crystalline mineral. Thus, the current findings support the concept that the peripheral intracellular accumulation of Ca2+ and Pi is directly involved in endochondral calcification.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: osteoblasts ; insulin-like growth factor-I ; calcium signaling ; fura 2 ; digital imaging ; receptor crosslinking ; Northern analysis ; Scatchard analysis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The role of the IGF-II/cation independent mannose-6-phosphate (IGF-II/M6P) receptor in the transduction of cellular effects evoked by IGF-II has been extensively debated in the literature. Many reports suggest that IGF-II transduces its effects through the IGF-I receptor, while others show that IGF-II utilizes the type II receptor to affect cellular activity. This study (1) verifies the presence of the IGF-II/M6P receptor in rat calvarial osteoblasts, and (2) evaluates the ability of the receptor to initiate intracellular single. Using conventional receptor binding assays, it was found that osteoblasts bind IGF-II with high affinity. Scatchard analyses indicated that there are 5.08 × 104 IGF-II/M6P receptor per osteoblast with a Kd near (2.0 nM). The receptor protein was further identified by cross-linking with 125I-IGF-II. Northern analysis was used to identify an mRNA transcript for the IGF-II/M6P receptor protein. To examine if the IGF-II/M6P receptor can initiate second messenger signals, the ability of IGF-II to evoke Ca2+ transients was evaluated. Osteoblasts pretreated with IGF-I did not lose their ability to respond to IGF-II. Further, a polyclonal antibody against the rat IGF-II/M6P receptor (R-II-PAB1) (1) was able to evoke its own Ca2+ response, and (2) was able to block the generation of Ca2+ transients caused by IGF-II. The data in this report show that the osteoblastic Ca2+ response to IGF-II appears to be caused by an intracellular release of Ca2+ which is mediated by the IGF-II/M6P receptor making it possible to envision how the receptor may be an important modulator of osteoblast mediated osteogenesis. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: dolichol ; polyprenol ; translocation ; glycosylation sites ; eukaryotic cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recently we reported that CHB11-1-3, a Chinese hamster ovary cell mutant defective in glycosylation of asparagine-linked proteins, is defective in the synthesis of dolichol [Quellhorst et al., 343:19-26, 1997: Arch Biochem Biophys]. CHB11-1-3 was found to be in the Lec9 complementation group, which synthesizes polyprenol rather than dolichol. In this paper, levels of various polyprenyl derivatives in CHB11-1-3 are compared to levels of the corresponding dolichyl derivatives in parental cells. CHB11-1-3 was found to maintain near normal levels of Man5GlcNAc2-P-P-polyprenol and mannosylphosphorylpolyprenol, despite reduced rates of synthesis, by utilizing those intermediates at a reduced rate. The Man5GlcNAc2 oligosaccharide attached to prenol in CHB11-1-3 cells and to dolichol in parental cells is the same structure, as determined by acetolysis. Man5GlcNAc2-P-P-polyprenol and Man5GlcNAc5-P-P-dolichol both appeared to be translocated efficiently in an in vitro reaction. Glycosylation of G protein was compared in vesicular stomatitus virus (VSV)-infected parent and mutant; although a portion of G protein was normally glycosylated in CHB11-1-3 cells, a large portion of G was underglycosylated, resulting in the addition of either one or no oligosaccharide to G. Addition of a single oligosaccharide occurred randomly rather than preferentially at one of the two sites. J. Cell. Biochem. 67:201-215, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...