ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 55-64 
    ISSN: 0887-6266
    Keywords: PDLC ; polarization ; angular discrimination ; copolymer ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Electrooptic responses (voltage and angular-dependent transmittance) of polymer/liquid crystal composite films with H, V, and unpolarized lights have been studied based on a nematic liquid crystal (Ro-5921) and four types of homopolymers and copolymers from ethyl methacrylate and styrene with different compositions. In this way, the index ratio of the polymer (np) to the ordinary refractive index of liquid crystal (no)(np/no) has been varied systematically, and the effect of the index ratio on viewing angle, applied voltage, response times, and transient response have been investigated. With increasing styrene content in the copolymer, droplet size increased, threshold (Vth) and saturation (Vsat) voltage, and rise time decreased. With np ≲ no, maximum transmittance occurred at normal incidence, regardless of the type of polarization. On the contrary with np 〉 no, V-polarization gave a peak in the transmittance-voltage curve, and transmittance overshot upon removal of the field, and these were interpreted in terms of effective refractive index and two-step relaxations. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 55-64, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1821-1830 
    ISSN: 0887-6266
    Keywords: reverse osmosis ; poly(aminostyrene) ; benzenediamines ; acyl chlorides ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Thin-film composite reverse osmosis membranes of polyamides were prepared by interfacial polymerization. Various benzenediamines and poly(aminostyrene) were interfacially reacted with various acyl chlorides to prepare a skin layer of composite membranes. Among the membranes prepared from the structural isomeric monomers of benzenediamines and acyl chlorides, i.e., the same chemical composition but different in the position of functional groups on the aromatic ring, the membrane with the best salt rejection was obtained when the reacting groups forming amide are located at the same position on the aromatic ring. Membranes prepared by interfacially reacting various diamines with trimesoyl chloride revealed that the salt rejection depends on the linear chain structure of polyamides and network formed by crosslinking. Membranes obtained by interfacial polymerization of poly(aminostyrene) with trimesoyl chloride showed higher water flux but lower salt rejection than those obtained by interfacial polymerization of various benzenediamines with trimesoyl chloride. Membranes obtained here showed the typical trade-off behavior between salt rejection and water flux. However, membranes prepared by interfacially reacting trimesoyl chloride with a mixture of poly(aminostyrene) and m-phenylenediamine or a mixture of poly(aminostyrene), m-phenylenediamine, and diaminobenzoic acid showed a performance advantage over usual membranes, i.e., a large positive deviation from the usual trade-off trend. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1821-1830, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2877-2886 
    ISSN: 0887-6266
    Keywords: ionomers ; NIR ; chemometrics ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Near Infrared (NIR) spectroscopy coupled with chemometrics techniques were utilized to study the composition and properties of styrene-sodium methacrylate ionomers. Predictive models were obtained for mol % ionic content, as well as for the ionic cluster glass transition temperature, storage modulus, and tan δ peak parameters. The results illustrate the feasibility of using NIR and chemometrics algorithms as a property predictive tool, as well as the potential for the development of full calibration models. The chemometric parameters are discussed based on correlations with ionomer NIR spectral features and the role water molecules play as a probe for the associated structure of the ionomer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2877-2886, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 133-141 
    ISSN: 0887-6266
    Keywords: recrystallization rate ; equilibrium melting temperature ; differential scanning calorimetry (DSC) ; poly(butylene terephthalate) (PBT) ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A method is described for measuring the heat and rate of recrystallization following partial melting. The method uses a specific sequence of temperatures with a differential scanning calorimeter, and the melting and recrystallization processes were confirmed by optical observations. The method was applied to poly(butylene terephthalate). The rate of recrystallization was found to be roughly two orders of magnitude faster than isothermal crystallization from the melt. The melting temperatures obtained from recrystallization were used in the Hoffman-Weeks equation to deduce 236°C as the equilibrium melting temperature for poly(butylene terephthalate). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 133-141, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1025-1041 
    ISSN: 0887-6266
    Keywords: comb-shaped polymer ; poly(3-dodecyl thiophene) ; poly(octadecyl acrylate) ; electroactive polymer ; chromism ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The conformational mode change of the stiff alkylated polymer, poly(3-dodecyl thiophene) (PDDT), with a flexible comb-like coil poly(octadecyl acrylate) (PODA), and the effect of intermolecular interaction between these two alkylated polymers with different chemical structure of the backbone were investigated using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimeter (DSC), and wide-angle x-ray diffraction (WAXD). In addition to the characteristics of thermochromism, a homogeneous one phase was observed above 175°C when the PODA content was 10 wt % or less. Increased conductivity in the PDDT/PODA blend due to the highly conjugated π-system of PDDT backbone was observed in the presence of nonelectroactive PODA. A red-shift of absorption maximum of PDDT/PODA blend observed in solid state at room temperature. From the FTIR spectra, the gauche-trans conformational structure change of methylene units was investigated in two alkylated polymer blends. The increase of combined heat of fusion of the alkyl side chain melting of PDDT and the endothermic peak of PODA, as well as the interlayer d-spacing of PDDT main chain were also observed with the addition of PODA in blends. A more ordered conformational structure of rigid rod backbone of PDDT was induced due to the attractive intermolecular interaction which can cause cocrystallization between the alkylated side chains of two polymers. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35:1025-1041, 1997
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 709-716 
    ISSN: 0887-6266
    Keywords: molecular-scale heterogeneity ; dynamic viscoelastic behavior ; CP/MAS 13C nuclear magnetic resonance relaxation ; proton spin-lattice relaxation time in the rotating frame, T1ρ ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dynamic mechanical and solid-state 13C nuclear magnetic resonance (NMR) analyses have been used to assess a molecular-scale heterogeneity in a raw elastomer (butadiene-acrylonitrile copolymer elastomer, NBR), a microcrystalline polymer (poly(vinyl chloride), PVC), and their 50/50 blend. The presence of the microcrystalline heterogeneity in PVC and in the blend was characterized by the temperature dependence of the frequency-swept dynamic mechanical behavior. The NMR T1ρ relaxation experiments with cross-polarization (CP) and magic-angle spinning (MAS) revealed that (1) NBR contained a substantial fraction (ca. 27%) of a molecular-scale heterogeneity identified as butadiene blocks, (2) the fraction of microcrystallites in PVC was ca. 14%, (3) pure phases of both component polymers were present in the blend, dispersed in the mixed matrix, (4) the upper limit of the heterogeneous domains was estimated to be ca. 2.4 nm, and (5) fractions of heterogeneity tend to increase upon blending, indicating that the solubility of the butadiene block and syndiotactic PVC block decreases in the blend. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 709-716, 1997
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1393-1399 
    ISSN: 0887-6266
    Keywords: PNLC ; UV cure ; polyurethane acrylate ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Polymer network liquid crystals (PNLC) have been prepared from ultraviolet-curable polyurethane acrylate (PUA) and a nematic liquid crystal mixture (BL002). Effects of monoacrylate type on film morphology, temperature-dependent off-state transmittance, and electro-optic performance of the film have been studied. Among three types of monoacrylates incorporated (EHA(2-ethyl hexyl acrylate), MMA (methylmethacryalte), NVP (N-vinylpyrrolidone)), EHA-based PUAs gave the greatest polymer-LC phase separation, lowest threshold (V10), and operating (V90) voltages, and the effect was more pronounced in monoacrylate/triacrylate systems than in monoacrylate/diacrylate systems. Contact angle measurement offers a clue to the observed morphology and electro-optic behavior. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1393-1399, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1633-1642 
    ISSN: 0887-6266
    Keywords: 1-octene based linear low-density polyethylene (LLDPE) ; low-density polyethylene (LDPE) ; high-density polyethylene (HDPE) ; molecular relaxations in solid state ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Extensive thermal and relaxational behavior in the blends of linear low-density polyethylene (LLDPE) (1-octene comonomer) with low-density polyethylene (LDPE) and high-density polyethylene (HDPE) have been investigated to elucidate miscibility and molecular relaxations in the crystalline and amorphous phases by using a differential scanning calorimeter (DSC) and a dynamic mechanical thermal analyzer (DMTA). In the LLDPE/LDPE blends, two distinct endotherms during melting and crystallization by DSC were observed supporting the belief that LLDPE and LDPE exclude one another during crystallization. However, the dynamic mechanical β and γ relaxations of the blends indicate that the two constituents are miscible in the amorphous phase, while LLDPE dominates α relaxation. In the LLDPE/HDPE system, there was a single composition-dependent peak during melting and crystallization, and the heat of fusion varied linearly with composition supporting the incorporation of HDPE into the LLDPE crystals. The dynamic mechanical α, β, and γ relaxations of the blends display an intermediate behavior that indicates miscibility in both the crystalline and amorphous phases. In the LDPE/HDPE blend, the melting or crystallization peaks of LDPE were strongly influenced by HDPE. The behavior of the α relaxation was dominated by HDPE, while those of β and γ relaxations were intermediate of the constituents, which were similar to those of the LLDPE/HDPE blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1633-1642, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1637-1645 
    ISSN: 0887-6266
    Keywords: ester interchange reaction ; Monte Carlo method ; copolymerization ; degree of randomness ; miscible polyester blend ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of reaction variables on the degree of randomness in copolymers formed by ester interchange reaction in miscible polyester melt blends were systematically investigated using a Monte Carlo method. Three reaction variables such as the molecular weight difference between two component polymers, the blend ratio, and the reaction ratio of end attack to bond flip, were particularly considered on the cubic lattice model. Ester interchange reactions were assumed to take place during reptational chain motions. It was found that the copolymerization was dependent upon the molecular weight difference and reaction ratio: As the molecular weight difference becomes smaller and when both end attack and bond flip reactions are involved simultaneously, the copolymerization is accelerated. However, the blend ratio does not affect the copolymerization process. This result is discussed in relation to the polymer chain conformation for the ester interchange reaction. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1637-1645, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1757-1767 
    ISSN: 0887-6266
    Keywords: poly(butylene terephthalate) ; differential scanning calorimetry (DSC) ; isothermal melt crystallization ; primary crystallization ; secondary crystallization ; recrystallization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The melting behavior of poly(butylene terephthalate) crystallized isothermally for various times was examined using differential scanning calorimetry. After short crystallization times, the DSC analysis gave two melting peaks, but after longer times, the analysis gave three peaks. The latter triplet of DSC peaks can be denoted as low, middle, and high, starting with the lowest temperature endotherm. The DSC peaks were simulated using a measured recrystallization rate and behavior for PBT and an assumed initial melting point distribution. The low and middle peaks represent the original melting peaks arising from isothermal crystallization. The high melting peak arises from recrystallization during the DSC heating scan. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1757-1767, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...