ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-08-30
    Description: The self-incompatibility (S) locus of flowering plants offers an example of extreme polymorphism maintained by balancing selection. Estimates of recent and long-term effective population size (Ne) were determined for two solanaceous species by examination of S-allele diversity. Estimates of recent Ne in two solanaceous species differed by an order of magnitude, consistent with differences in the species' ecology. In one species, the evidence was consistent with historical population restriction despite a large recent Ne. In the other, no severe bottleneck was indicated over millions of years. Bottlenecks are integral to founder-event speciation, and loci that are subject to balancing selection can be used to evaluate the frequency of this mode of speciation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richman, A D -- Uyenoyama, M K -- Kohn, J R -- GM 37841/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Aug 30;273(5279):1212-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703052" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Amino Acid Sequence ; *Genes, Plant ; *Genetic Variation ; Molecular Sequence Data ; Phylogeny ; Plant Proteins/chemistry/*genetics ; Plants/classification/*genetics ; Polymerase Chain Reaction ; Selection, Genetic ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-896X
    Keywords: nanoclusters ; powder synthesis ; FTIR spectroscopy ; laser prolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract Pulsed CO2-laser-induced decomposition of different mixtures of SiH4 and C2H2 in a flow reactor has been employed to produce silicon carbide clusters and nanoparticles with varying content of carbon. The as-synthesized species were extracted from the reaction zone by a conical nozzle and expanded into the source chamber of a cluster beam apparatus where, after having traversed a differential chamber, they were analyzed with a time-of-flight mass spectrometer. Thin films of silicon carbide nanoclusters were produced by depositing the clusters at low energy on potassium bromide and sapphire windows mounted into the differential chamber. At the same time, Si and SiC nanoparticles were collected in a filter placed into the exhaust line of the flow reactor. Both beam and powder samples were characterized by FTIR spectroscopy. The close resemblance of the spectra suggests that the composition of the beam and powder particles obtained during the same run is nearly identical. XRD spectroscopy could only be employed for the investigation of the powders. It was found that CO2 laser pyrolysis is ideally suited to produce silicon carbide nanoparticles with a high degree of crystallinity. Nanopowders produced from the pyrolysis of a stoichiometric (2:1) mixture of SiH4/C2H2 were found to contain particles or domains of pure silicon. The characteristic silicon features in the FTIR and XRD spectra, however, disappeared when C2H2 was applied in excess.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...