ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cellulose microfibril  (4)
  • Amphibian  (2)
  • In situ hybridization  (2)
  • Springer  (8)
  • 1995-1999  (8)
  • 1960-1964
  • 1935-1939
  • 1920-1924
Collection
Publisher
  • Springer  (8)
Years
  • 1995-1999  (8)
  • 1960-1964
  • 1935-1939
  • 1920-1924
  • 1990-1994  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 176 (1995), S. 703-713 
    ISSN: 1432-1351
    Keywords: Neural control of breathing ; Amphibian ; Isolated brainstem ; Respiration Pattern generation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Spontaneous rhythmically bursting activity was recorded from the trigeminal, vagal and hypoglossal nerve roots of the isolated brainstem from the frogsRana catesbeiana andRana pipiens superfused with a bicarbonate-free HEPES-buffer solution. Burst frequency, burst duration and the activity profile of the spontaneous neural discharges in vitro resembled those of a less radical preparation, the decerebrate, fictively breathing frog. After complete midsagittal section, each half of the isolated brainstem generated its own rhythmic neural activity which resembled that of the intact isolated brainstem. The spontaneous activity generated within each half of the brainstem is probably coordinated by decussating axons or by groups of neurons located along the midline of the brainstem. Our results suggest that these coordinating entities extend the length of the brainstem (in a rostro-caudal dimension) and the degree of contact rather than the location of the contact between the two halves of the brainstem determines the synchronization of the right and left halves. Burst frequency of both the intact and hemisected brainstem preparation was decreased by alkaline challenge and increased by acid challenge. We conclude that this endogeneous rhythmic activity represents the efferent motor output underlying lung ventilation in these animals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 176 (1995), S. 703-713 
    ISSN: 1432-1351
    Keywords: Neural control of breathing ; Amphibian ; Isolated brainstem ; Respiration Pattern generation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Spontaneous rhythmically bursting activity was recorded from the trigeminal, vagal and hypoglossal nerve roots of the isolated brainstem from the frogs Rana catesbeiana and Rana pipiens superfused with a bicarbonate-free HEPES-buffer solution. Burst frequency, burst duration and the activity profile of the spontaneous neural discharges in vitro resembled those of a less radical preparation, the decerebrate, fictively breathing frog. After complete midsagittal section, each half of the isolated brainstem generated its own rhythmic neural activity which resembled that of the intact isolated brainstem. The spontaneous activity generated within each half of the brainstem is probably coordinated by decussating axons or by groups of neurons located along the midline of the brainstem. Our results suggest that these coordinating entities extend the length of the brainstem (in a rostro-caudal dimension) and the degree of contact rather than the location of the contact between the two halves of the brainstem determines the synchronization of the right and left halves. Burst frequency of both the intact and hemisected brainstem preparation was decreased by alkaline challenge and increased by acid challenge. We conclude that this endogeneous rhythmic activity represents the efferent motor output underlying lung ventilation in these animals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Key words mRNA ; Cancerous epithelium ; Autocrine growth regulation ; In situ hybridization ; Immunohistochemistry ; Western blotting ; Benign prostate hyperplasia ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Insulin-like growth factors (IGFs) are potent mitogens for a variety of cancer cells in vitro. A paracrine/autocrine role of IGF-II in the growth of breast and prostate cancer cells has been suggested. Information on cell-type-specific IGF-II expression in vivo in the breast and prostate is, however, limited. Thus, cell types expressing IGF-II mRNA and protein in tumors were identified by in situ hybridization and immunohistochemistry. Of 36 prostate, 17 breast, and 10 bladder cancers, and 9 paraganglioma tissues examined, IGF-II was expressed in more than 50% of prostate, breast, and bladder tumors, and in 100% of paraganglioma tumors. Expression levels of IGF-II were highest in the paraganglioma and bladder followed by prostate and breast tumors. In all the tumors expressing IGF-II, both mRNA and protein were localized to malignant cells, expression in the stroma being minimal. Since previous studies had indicated that an incompletely processed form of 15-kDa IGF-II exhibited higher mitogenic potency than the completely processed 7.5-kDa IGF-II form, the quantity and size of IGF-II proteins expressed in these tumors were analyzed by Western immunoblotting. Greater expression of 15-kDa IGF-II relative to the 7.5-kDa IGF-II form was clearly demonstrated in all six prostate cancers and in half of the two breast and four bladder cancers examined. The results are consistent with the hypothesis that the 15-kDa form of IGF-II expressed in cancerous cells contributes to autocrine cancer cell growth in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Key words Type XI collagen ; Gene expression ; In situ hybridization ; Alternative splicing ; Mouse (ICR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Type XI collagen is an essential structural component of the extracellular matrix of cartilage and plays a role in collagen fibril formation and skeletal morphogenesis. The expression of all three type XI collagen genes is not restricted to cartilage. In addition, alternative exon usage seems to increase the structural diversity and functional potential of type XI collagen during development. In order to investigate type XI collagen expression during development, we have examined α2(XI) and α1(XI) collagen genes by in situ hybridization in mice. Transcripts of the α2(XI) collagen gene were first detected in the notochord of mouse embryos after 11.5 days of gestation. Subsequently, α2(XI) mRNA was mainly found in the cartilaginous tissues of the developing limbs and axial skeleton together with transcripts of the α1(XI) gene. The α2(XI) transcripts seemed to be alternatively spliced isoforms lacking exons 6–8, which code for an acidic domain. Expression of α2(XI) outside the cartilage was relatively restricted, whereas expression of the α1(XI) gene was widespread. However, expression of α2(XI) transcripts containing exons 6–8 was found in non-chondrogenic tissues, including the calvarium and periosteum where intramembranous ossification occurs. These results indicate that α2(XI) mRNA isoforms are differentially expressed in various tissues during development. In addition, α2(XI) mRNA isoforms containing alternative exons are present in osteogenic cells, and their expression may be closely related to the formation of bone or cartilage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 186 (1995), S. 24-33 
    ISSN: 1615-6102
    Keywords: Cellulose microfibril ; Electron diffraction ; Glomerulocyte ; Metandrocarpa uedai ; Tunic ; Vacuole-like structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The tunicate,Metandrocarpa uedai, contains a large quantity of cellulose; however, it is not known how and where the cellulose is synthesized. Based on evidence from electron diffraction and conventional thin-sectioning for electron microscopy, this study shows that the glomerulocyte is involved in the synthesis of cellulose. The bundles of microfibrils in the glomerulocyte as well as the tunic were identified as cellulose I using selected area electron diffraction analysis. The diffraction pattern of cellulose in the glomerulocyte was similar to that from the tunic, suggesting that the crystallization of cellulose already is initiated in the glomerulocyte. The diameter of cellulose microfibrils, both in the glomerulocyte and the tunic was the same, about 16 nm. These results suggest that the glomerulocyte is the most probable site for the synthesis of cellulose in the tunic ofM. uedai. Using thin-sectioning techniques, a series of observations showed that individual microfibrils are primarily assembled in structures tentatively identified as vacuole-like structures, then they are bundled by a tapering region within the vacuole-like structures. These bundles of microfibrils are deposited in a continuously circular arrangement. The microtubules are oriented parallel to the bundles of microfibrils at the tapering vacuole-like structure, and they may be involved in the tapering of these structures (perhaps controlling the shape). This study also provides the first account for the involvement of a vacuole-like structure in the synthesis of cellulose microfibrils among living organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1615-6102
    Keywords: Cellulose microfibril ; Freeze-fracture ; Terminal complex ; Tunic ; Tunicate ; Ascidian
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cellulose synthesizing enzyme complexes (terminal complexes, TCs) have been found in the plasma membrane of epidermal cells in the tunicateMetandrocarpa uedai by using freeze-fracture replication techniques for electron microscopy. Assembly of cellulose microfibrils by TCs is a universal phenomenon in the biological kingdoms. The TCs are locally distributed in the plasma membrane of the epidermal cells facing the tunic, and no TCs are observed on the lateral membranes bordered by tight junctions. The TCs consist of two types of membrane subunits: large particles (14.5 nm in diameter) on the periphery and small subunit particles (7.2 nm) filling the center; the latter are hypothesized to be involved in cellulose synthesis. The TCs are the linear type (ca. 195 nm in length and 78 nm in width). Direct connections of TCs with the termini of microfibrils were observed. Amorphous regions, which were hypothesized the nascent microfibrils, were associated with the depressions of the TCs. The distortion of microfibrils on their terminus indicates that the crystallization may occur at the margin of TCs from which the microfibrils are discharged. This report provides evidence that: (1) The outer cell membrane of epidermis is the site for the assembly of cellulose microfibrils in the tunic; (2) a new type of TC is involved in the biosynthesis of cellulose microfibrils in the tunicates; (3) disorganized glucan chains may be synthesized in the depression of TCs and crystallized outside the E-surface of the epidermal cell membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1615-6102
    Keywords: Cellulose microfibril ; Cross-sectional shape ; Lattice image ; Lattice orientation ; Glomerulocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Glomerulocyte cellulosic bundles ofPolyzoa vesiculiphora were investigated by microdiffraction and high-resolution electron microscopy. In each bundle, hundreds of cellulose microfibrils, having a rectangular cross-sectional shape, are packed regularly with their 0.6 nm lattice planes parallel to each other. Lattice images reveal that the 0.6 nm plane is parallel to the longer edge of the cross section which is similar to the lattice organization of cellulose with a squarish cross section inValonia spp. More interestingly, all the microfibrils in a bundle have the same directionality of crystallographic c-axis, which suggests that the biosynthesis of the microfibrils within particular bundle occurs unidirectionally.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 204 (1998), S. 94-102 
    ISSN: 1615-6102
    Keywords: Ascidian ; Cellulose microfibril ; Hemocoel ; Polyandrocarpa misakiensis ; Tunic cord
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A specialized structure of tunic cord inPolyandrocarpa misakiensis is investigated by electron microscopy. The tunic cord is a cord-like coiled structure of 5–30 μm in diameter and 0.1–9.0 mm in length. The tunic cords originate and elongate from the dorsal tunic, and their termini have a swollen and ornamented structure. Scanning and transmission electron micrographs and the electron diffractogram show that the tunic cords are composed of bundled microfibrils of cellulose I with high crystallinity. The tunic cord is completely surrounded by single-layered epidermal cells, which have been found as the site of cellulose biosynthesis. A number of tunic cords are connected to the internal tunic of the siphon by forming “eyelet” structures at their termini. These observations suggest that the tunic cords act as a connector between dorsal and internal tunic of the siphon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...