ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anaerobiosis  (2)
  • Depth profile  (2)
  • Springer  (4)
  • National Academy of Sciences
  • Nature Publishing Group
  • Oxford University Press
  • 1995-1999  (4)
  • 1960-1964
  • 1950-1954
Collection
Publisher
  • Springer  (4)
  • National Academy of Sciences
  • Nature Publishing Group
  • Oxford University Press
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 38-42 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Depth profile ; Fumigation-extraction method ; Soil organic matter ; Dormant population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 μg g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 μg g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 μg g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 38-42 
    ISSN: 1432-0789
    Keywords: Key words Microbial biomass ; Depth profile ; Fumigation-extraction method ; Soil organic matter ; Dormant population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 μg g–1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 μg g–1 soil (neutral site) at 10–20 cm to values of between 13 and 12 μg g–1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Key words Gonococci ; Pilli ; Transcription ; Anaerobiosis ; Growth phase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The type-4 pilus of Neisseria gonorrhoeae is a dominant surface antigen which facilitates adhesion to host target cells, an essential event in gonococcal infection. pilC2 encodes a 110-kDa protein involved in pilus assembly, pilus-mediated adherence to human epithelial cells in culture and natural competence for DNA transformation. Luciferase activity directed from a chromosomal pilC2::luxAB transcriptional fusion was reduced approximately 4-fold when cells were grown anaerobically. We observed a concomitant reduction in gonococcal piliation by electron microscopy and a reduction in the ability to adhere to ME-180 human epithelial cells when bacteria were grown in the absence of oxygen. Furthermore, we present evidence for growth-phase regulation of the gonococcal pilC2 gene in Escherichia coli, and show that all sequences necessary for growth-phase regulation are contained on a 121-bp pilC2 fragment. Expression from the minimal pilC2 fragment fused to lacZ in single-copy in E. coli was induced 2-fold when cells entered stationary phase. Surprisingly, induction does not require rpoS, the gene, which encodes the starvation-induced sigma factor RpoS. In summary, we have demonstrated that pilC2 is both positively and negatively regulated at the level of transcription. This regulation is most probably relevant to physiological conditions within the human host which influence gonococcal infections.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 256 (1997), S. 525-532 
    ISSN: 1617-4623
    Keywords: Key words Gonococci ; aniA ; Pan1 ; Nitrite reductase ; Anaerobiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aniA gene of Neisseria gonorrhoeae encodes an outer membrane lipoprotein which is strongly induced when gonococci are grown anaerobically in vitro in the presence of nitrite. Database searches with the amino acid sequence derived from the aniA structural gene revealed significant homologies to copper-containing nitrite reductases from several denitrifying bacteria. We constructed an insertional mutation in the aniA locus of strain MS11 by allelic replacement, to determine whether this locus was necessary for growth in oxygen-depleted environments, and to demonstrate that AniA was indeed a nitrite reductase. The mutant was severely impaired in its ability to grow microaerophilically in the presence of nitrite, and we observed a loss in viability over several hours of incubation. No measurable nitrite reductase activity was detected in the aniA mutant strain, and activity in the strain with a wild-type locus was inducible. Finally, we report investigations to determine whether AniA protein is involved in gonococcal pathogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...