ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dihydrofolate synthetase  (2)
  • Domestic garbage  (2)
  • Springer  (4)
  • Cell Press
  • Nature Publishing Group
  • Oxford University Press
  • 1995-1999  (4)
  • 1960-1964
  • 1950-1954
Collection
Publisher
  • Springer  (4)
  • Cell Press
  • Nature Publishing Group
  • Oxford University Press
Years
  • 1995-1999  (4)
  • 1960-1964
  • 1950-1954
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 43-49 
    ISSN: 1432-0789
    Keywords: Nitrogen fractions ; Amino acids ; Amino sugars ; Microbial respiration ; Household waste ; Domestic garbage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An incubation experiment was performed to determine how the mixing of soil with municipal organic refuse compost affects C mineralization, growth of the microbial biomass, and changes in organic components, especially in the fractions of amino acids and amino sugars. Compost and soil differed in almost every parameter measured, with the organic C content of the compost representing only 10.8% of the dry weight. The fractions of K2SO4-extractable organic C and of non-hydrolyzable C were larger in the compost (1.24 and 62.9% of organic C, respectively) than in the soil (0.56 and 41.6% of organic C). These two fractions increased in proportion to the addition of compost, in contrast to amino sugar and amino acid C which were identified overproportionately in the mixture treatments, especially in the 30% compost treatment. Overproportionate increases in the microbial biomass C content and CO2 evolution rate were also measured in this treatment. The adsorption of compost colloids on the surface of regular soil silicates increased both the availability for microbial enzymes and the detectability for chemical analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 43-49 
    ISSN: 1432-0789
    Keywords: Key words Nitrogen fractions ; Amino acids ; Amino sugars ; Microbial respiration ; Household waste ; Domestic garbage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An incubation experiment was performed to determine how the mixing of soil with municipal organic refuse compost affects C mineralization, growth of the microbial biomass, and changes in organic components, especially in the fractions of amino acids and amino sugars. Compost and soil differed in almost every parameter measured, with the organic C content of the compost representing only 10.8% of the dry weight. The fractions of K2SO4-extractable organic C and of non-hydrolyzable C were larger in the compost (1.24 and 62.9% of organic C, respectively) than in the soil (0.56 and 41.6% of organic C). These two fractions increased in proportion to the addition of compost, in contrast to amino sugar and amino acid C which were identified overproportionately in the mixture treatments, especially in the 30% compost treatment. Overproportionate increases in the microbial biomass C content and CO2 evolution rate were also measured in this treatment. The adsorption of compost colloids on the surface of regular soil silicates increased both the availability for microbial enzymes and the detectability for chemical analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 250 (1996), S. 277-285 
    ISSN: 1617-4623
    Keywords: Key words Gonococcus ; Folic acid ; Dihydrofolate synthetase ; Folylpolyglutamate synthetase ; One-carbon metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The gene coding for folylpoly-(γ)-glutamate synthetase (FPGS)-dihydrofolate synthetase (DHFS) of Neisseria gonorrhoeae (Ngo) has been cloned by functional complementation of an Escherichia coli folC mutant (SF4). The sequence encodes a 224-residue protein of 46.4 kDa. It shows 46% identity to the E. coli FPGS-DHFS and 29% identity to the FPGS of Lactobacillus casei. Sequence comparisons between the three genes reveal regions of high homology, including ATP binding sites required for bifunctionality, all of which may be important for FPGS activity. In contrast to L. casei FPGS, the E. coli and Ngo enzymes share some additional regions which may be essential for DHFS activity. The products of Ngo folC and flanking genes were monitored by T7 promoter expression. Interestingly, deletion of the upstream folI gene, which encodes a 16.5 kDa protein, abolishes the capacity of folC to complement E. coli SF4 to the wild-type phenotype. The ability to complement can be restored by folI provided in trans. Unlike folC mutants, gonococcal folI mutants are viable and display no apparent phenotype. Thus, in contrast to E. coli, Ngo folC is expressed at a sufficiently high level from its own promoter, in the absence of FolI. This study provides the first insights into the genetic complexity of one-carbon metabolism in Ngo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 250 (1996), S. 277-285 
    ISSN: 1617-4623
    Keywords: Gonococcus ; Folic acid ; Dihydrofolate synthetase ; Folylpolyglutamate synthetase ; One-carbon metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The gene coding for folylpoly-(γ)-glutamate synthetase (FPGS)-dihydrofolate synthetase (DHFS) ofNeisseria gonorrhoeae (Ngo) has been cloned by functional complementation of anEscherichia coli folC mutant (SF4). The sequence encodes a 224-residue protein of 46.4 kDa. It shows 46% identity to theE. coli FPGS-DHFS and 29% identity to the PFGS ofLactobacillus casei. Sequence comparisons between the three genes reveal regions of high homology, including ATP binding sites required for bifunctionality, all of which may be important for FPGS activity. In contrast toL. casei FPGS, theE. coli andNgo enzymes share some additional regions which may be essential for DHFS activity. The products ofNgo folC and flanking genes were monitored by T7 promoter expression. Interestingly, deletion of the upstreamfolI gene, which encodes a 16.5 kDa protein, abolishes the capacity offolC to complementE. coli SF4 to the wild-type phenotype. The ability to complement can be restored byfolI providedin trans. UnlikefolC mutants, gonococcalfolI mutants are viable and display no apparent phenotype. Thus, in contrast toE. coli, Ngo folC is expressed at a sufficiently high level from its own promoter, in the absence of FolI. This study provides the first insights into the genetic complexity of one-carbon metabolism inNgo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...