ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 37-42 
    ISSN: 0730-2312
    Keywords: archaeon ; ADPribose ; glycation ; ADPribose transferase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In the archaeon Sulfolobus solfataricus, protein ADPribosylation by free ADPribose was demonstrated by testing both [adenine-14C(U)]ADPR and [adenine- 14C(U)]NAD as substrates. The occurrence of this process was shown by using specific experimental conditions. Increasing the incubation time and lowering the pH of the reaction mixture enhanced the protein glycation by free ADPribose. At pH 7.5 and 10 min incubation, the incorporation of free ADPribose into proteins was highly reduced. Under these conditions, the autoradiographic pattern showed that, among the targets of ADPribose electrophoresed after incubation with 32P-NAD, the proteins modified by free 32P-ADPribose mostly corresponded to high molecular mass components. Among the compounds known to inhibit the eukaryotic poly-ADPribose polymerase, only ZnCl2 highly reduced the ADPribose incorporation from NAD into the ammonium sulphate precipitate. A 20% inhibition was measured in the presence of nicotinamide or 3-aminobenzamide. No inhibition was observed replacing NAD with ADPR as substrate. J. Cell. Biochem. 66: 37-42, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent evidence suggested a role for the cell cycle dependent kinases cdc2 and cdk2 in apoptosis. An important mechanism by which many cell types could undergo apoptosis is through the activation of the Fas molecule on the cell membrane. To investigate whether Fas-induced cell death activated cdc2 and cdk2 kinases inappropriately, the human T lymphoma cells HUT-78, which express a high copy number of Fas, and two other previously characterized subclones of the same cell line which express mutant, cell death-deficient dominant-negative forms of Fas, were Fas-challenged and the changes in cdc2 and cdk2 kinase activity monitored. In both wild-type and Fas-mutated HUT-78 cells, apoptosis was associated simultaneously with decreased cdc2 and increased cdk2 activity. This association suggested that changes in cdc2 and cdk2 kinase activity are secondary events in cell death mediated by Fas. J. Cell. Biochem. 64:579-585. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: nuclear bodies ; PML ; confocal microscopy ; image restoration ; RNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The PML protein is a human growth suppressor concentrated in 10 to 20 nuclear bodies per nucleus (PML bodies). Disruption of the PML gene has been shown to be related to acute promyelocytic leukaemia (APL). To obtain information about the function of PML bodies we have investigated the 3D-distribution of PML bodies in the nucleus of T24 cells and compared it with the spatial distribution of a variety of other nuclear components, using fluorescence dual-labeling immunocytochemistry and confocal microscopy. Results show that PML bodies are not enriched in nascent RNA, the splicing component U2-snRNP, or transcription factors (glucocorticoid receptor, TFIIH, and E2F). These results show that PML bodies are not prominent sites of RNA synthesis or RNA splicing. We found that a large fraction of PML bodies (50 to 80%) is closely associated with DNA replication domains during exclusively middle-late S-phase. Furthermore, in most cells that we analysed we found at least one PML body was tightly associated with a coiled body. In the APL cell line NB4, the PML gene is fused with the RARα gene due to a chromosomal rearrangement. PML bodies have disappeared and the PML antigen, i.e., PML and the PML-RAR fusion protein, is dispersed in a punctated pattern throughout the nucleoplasm. We showed that in NB4 cells the sites that are rich in PML antigen significantly colocalize with sites at which nascent RNA accumulates. This suggests that, in contrast to non-APL cells, in NB4 cells the PML antigen is associated with sites of transcription. The implications of these findings for the function of PML bodies are consistent with the idea that PML bodies are associated with specific genomic loci. © 1996 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Lovastatin (LOV), a hydroxy-methylglutaryl-coenzyme A (HMGCoA) reductase competitive inhibitor, blocks epidermal growth factor (EGF) -  or prostaglandin F2α (PGF2α) - induced mitogenesis in confluent resting Swiss 3T3 cells. This inhibition occurs even in the presence of insulin, which potentiates the action of these mitogens in such cells. LOV exerts its effect in a 2-80 μM concentration range, with both mitogens attaining 50% inhibition at 7.5 μM. LOV exerted its effect within 0-8 h following mitogenic induction. Mevanolactone (10-80 μM) in the presence of LOV could reverse LOV inhibition within a similar time period. LOV-induced blockage of PGF2α response is reflected in a decrease in the rate of cell entry into S phase. Neither cholesterol, ubiquinone, nor dolichols of various lengths could revert LOV blockage. In EGF- or PGF2α-stimulated cells, LOV did not inhibit [3H]leucine or [3H]mannose incorporation into proteins, while tunicamycin, an inhibitor of N′ glycosylation, prevented this last phenomenon. Thus, it appears that LOV exerts its action neither by inhibiting unspecific protein synthesis nor by impairing the N′ glycosylation process. These findings strongly suggest that either EGF or PGF2α stimulations generate early cell cycle signals which induce mevalonate formation, N′ glycoprotein synthesis, and proliferation. The causal relationship of these events to various mechanisms controlling the onset of DNA synthesis is also discussed. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The mechanism of respiration in the bullfrog has been analyzed by means of pressure recordings from the buccal cavity, the lungs and the abdominal cavity, by cinematography and cinefluorography, and by electromyography of buccal, laryngeal and abdominal muscles. Gas flow was investigated by putting frogs in atmospheres of changing argon and nitrogen content and monitoring the concentration of the nostril efflux.Three kinds of cyclical phenomena were found. (1) Oscillatory cycles consist of rhythmical raising and lowering of the floor of the mouth, with open nares. They have a definite respiratory function in introducing fresh air into the buccal cavity. (2) Ventilatory cycles involve opening and closing of the glottis and nares and renewal of a portion of the pulmonary gas. More muscles are involved and the pattern of muscular activity is more complex than in the oscillatory cycles. (3) Inflation cycles consist of a series of ventilation cycles, interrupted by an apneic pause. The intensity of the ventilatory cycles increases before this pause and decreases immediately thereafter. This results in a stepwise increase in pulmonary pressure, to a plateau (coincident with the pause) followed by a sudden or stepwise decrease.The respiratory mechanism depends on the activity of a buccal force pump, which determines pulmonary pressure whose level is always slightly less than the peak pressure values of the ventilation cycles. The elevated pulmonary pressure is responsible for the expulsion of pulmonary gas during the second phase of the next ventilation cycle. This pressure is maintained by the elastic fibers (and the smooth masculature) of the lungs.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 30 (1995), S. 153-163 
    ISSN: 0886-1544
    Keywords: colchicine binding site ; MTC ; cod microtubules ; bovine microtubules ; MAPs ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Isolated microtubules from cod (Gadus morhua) are apparently more stable to colchicine than bovine microtubules. In order to further characterize this difference, the effect of the colchicine analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cyclo heptatrien-1-one (MTC) was studied on assembly, as measured by turbidity and sedimentation analysis, and on polymer morphology. MTC has the advantage to bind fast and reversible to the colchicine binding site of tubulin even at low temperatures. It was found to bind to one site in cod brain tubulin, with affinity (6.5 ± 1.5) × 105M 1at both low or high temperature, similarly to bovine brain tubulin. However, the effect of the binding differed. At substoichiometric concentrations of MTC bovine brain microtubule assembly was almost completely inhibited, while less effect was seen on the mass of polymerized cod microtubule proteins. A preformed bovine tubulin-colchicine complex inhibited the assembly of both cod and bovine microtubules at substoichiometric concentrations, but the effect on the assembly of cod microtubules was less. At higher concentrations (5 × 10-5 to 1 × 10-3M), MTC induced a large amount of cold-stable spirals of cod proteins, whereas abnormal polymers without any defined structure were formed from bovine proteins. Spirals of cod microtubule proteins were only formed in the presence of microtubule associated proteins (MAPs), indicating that the morphological effect of MTC can be modulated by MAPs. The effects of colchicine and MTC differed. At 10-5M colchicine no spirals were formed, while at 10-4M and 10-3M, a mixture of spirals and aggregates was found. The morphology of the spirals differed both from vinblastine spirals and from the spirals previously found when cod microtubule proteins polymerize in the presence of high Ca2concentrations. The present data show that even if the colchicine binding site is conserved between many different species, the bindings have different effects which seem to depend on intrinsic properties of the different tubulins. © 1995 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: tumor suppressor gene ; retinoblastoma gene ; Rb2/p130 ; pocket protein ; nuclear phosphoprotein ; E1A oncoprotein ; cell cycle ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The Rb2/p130 protein has been shown to have a high sequence homology with the retinoblastoma gene product (pRb), one of the most well-characterized tumor suppressor genes, and with pRb-related p107, especially in their conserved pocket domains, which display a primary role in the function of these proteins. In this study, we report on the biochemical and immunocytochemical characterization of the Rb2/p130 protein, using a polyclonal antibody developed against its “spacer” region included in the pocket domain of the whole protein. We show that pRb/p130 is a phosphoprotein located at the nuclear level and that its phosphorylation pathway can be dramatically reduced by phosphatase treatment. Moreover pRb/p130, with p107, with p107, is one of the major targets of the E1A viral oncoprotein-associated kinase activity, showing a phosphorylation pattern which is modulated during the cell cycle, reaching a peak of activation at the onset of S-phase. © 1995 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 62 (1996), S. 275-289 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; HeLa S3 cells ; 2-D gel electrophoresis ; heterogeneous nuclear ribonucleoproteins ; B23 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear matrix is the structure that persists after removal of chromatin and loosely bound components from the nucleus. It consists of a peripheral lamina-pore complex and an intricate internal fibrogranular structure. Little is known about the molecular structure of this proteinaceous internal network. Our aim is to identify the major proteins of the internal nuclear matrix of HeLa S3 cells. To this end, a cell fraction containing the internal fibrogranular structure was compared with one from which this structure had been selectively dissociated. Protein compositions were quantitatively analyzed after high-resolution two-dimensional gel electrophoresis. We have identified the 21 most abundant polypeptides that are present exclusively in the internal nuclear matrix. Sixteen of these proteins are heterogeneous nuclear ribonucleoprotein (hnRNP) proteins. B23 (numatrin) is another abundant protein of the internal nuclear matrix. Our results show that most of the quantitatively major polypeptides of the internal nuclear matrix are proteins involved in RNA metabolism, including packaging and transport of RNA. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: osteoblasts ; calvaria ; bone formation ; proliferation ; differentiation ; osteogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have determined the age-related changes in the growth characteristics and expression of the osteoblast phenotype in human calvaria osteoblastic cells in relation with histologic indices of bone formation during postnatal calvaria osteogenesis. Histomorphometric analysis of normal calvaria samples obtained from 36 children, aged 3 to 18 months, showed an age-related decrease in the extent of bone surface covered with osteoblasts and newly synthesized collagen, demonstrating a progressive decline in bone formation during postnatal calvaria osteogenesis. Immunohistochemical analysis showed expression of type I collagen, bone sialoprotein, and osteonectin in the matrix and osteoblasts, with no apparent age-related change during postnatal calvaria osteogenesis. Cells isolated from human calvaria displayed characteristics of the osteoblast phenotype including alkaline phosphatase (ALP) activity, osteocalcin (OC) production, expression of bone matrix proteins, and responsiveness to calciotropic hormones. The growth of human calvaria osteoblastic cells was high at 3 months of age and decreased with age, as assessed by (3H)-thymidine incorporation into DNA. Thus, the age-related decrease in bone formation is associated with a decline in osteoblastic cell proliferation during human calvaria osteogenesis. In contrast, ALP activity and OC production increased with age in basal conditions and in response to 1,25(OH)2, vitamin D3, suggesting a reciprocal relationship between cell growth and expression of phenotypic markers during human postnatal osteogenesis. Finally, we found that human calvaria osteoblastic cells isolated from young individuals with high bone formation activity in vivo and high growth potential in vitro had the ability to form calcified nodular bone-like structures in vitro in the presence of ascorbic acid and β-glycerophosphate, providing a new model to study human osteogenesis in vitro. J. Cell. Biochem. 64:128-139. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: cell cycle control ; H4 gene promoter ; G1/S phase transition point ; CDP/cut ; interferon regulatory factor 2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The histone H4 gene promoter provides a paradigm for defining transcriptional control operative at the G1/S phase transition point in the cell cycle. Transcription of the cell cycle-dependent histone H4 gene is upregulated at the onset of S phase, and the cell cycle control element that mediates this activation has been functionally mapped to a proximal promoter domain designated Site II. Activity of Site II is regulated by an E2F-independent mechanism involving binding of the oncoprotein IRF2 and the multisubunit protein HiNF-D, which contains the homeodomain CDP/cut, CDC2, cyclin A, and the tumor suppressor pRb. To address mechanisms that define interactions of Site II regulatory factors with this cell cycle control element, we have investigated these determinants of transcriptional regulation at the G1/S phase transition in FDC-P1 hematopoietic progenitor cells. The representation and activities of histone gene regulatory factors were examined as a function of FDC-P1 growth stimulation. We find striking differences in expression of the pRb-related growth regulatory proteins (pRb/p105, pRb2/p130, and p107) following the onset of proliferation. pRb2/p130 is present at elevated levels in quiescent cells and declines following growth stimulation. By contrast, pRb and p107 are minimally represented in quiescent FDC-P1 cells but are upregulated at the G1/S phase transition point. We also observe a dramatic upregulation of the cellular levels of pRb2/p130-associated protein kinase activity when S phase is initiated. Selective interactions of pRb and p107 with CDP/cut are observed during the FDC-P1 cell cycle and suggest functional linkage to competency for DNA binding and/or transcriptional activity. These results are particularly significant in the context of hematopoietic differentiation where stringent control of the cell cycle program is requisite for expanding the stem cell population during development and tissue renewal. J. Cell. Biochem. 66:512-523, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...