ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (22)
  • Springer  (19)
  • American Institute of Physics (AIP)  (7)
  • 1995-1999  (33)
  • 1975-1979  (15)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 44 (1979), S. 1839-1842 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 2297-2308 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The thickness uniformity of a spin-cast film is governed by the air flow through the spin coater, particularly the boundary layer flow above the surface of the spinning wafer, which controls solvent evaporation from the dry film. Laser Doppler velocimetry (LDV) and hot wire anemometry (HWA) are used to map the flow field throughout an industrial spin coater and to study flow instabilities in the boundary layer for various combinations of wafer spin speed and exhaust flow rate. The flow field measured by LDV compares well with a numerical simulation of laminar, axisymmetric, and steady air flow throughout the coating bowl. However, Ekman spiral flow instabilities of both type I (positive spiral angle) and type II (negative spiral angle) were found by HWA in the boundary layer near the surface of the spinning wafer. The type-II spirals form at Reynolds number in the range 2000–2500 and the type-I spirals form at Reynolds number in the range 80 000–85 000. It is the type-II spirals that are responsible for disrupting the air flow in the boundary layer flow and that cause nonuniform drying of spin-cast films. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 29 (1995), S. 1223-1231 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 41 (1976), S. 3622-3624 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 68 (1996), S. 3028-3030 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Stillinger–Weber interatomic potential is used in molecular dynamics simulations to compute estimates of the equilibrium and transport properties of self-interstitials and vacancies in crystalline silicon at high temperature. Equilibrium configurations are predicted as a 〈110〉 dumbbell for a self-interstitial, and as an inwardly relaxed configuration for a vacancy. Both structures show considerable delocalization with increasing temperature, which leads to a strong temperature dependence of the entropy of formation, as suggested by diffusion experiments. Diffusion coefficients and mechanisms are predicted as a function of temperature. The predictions are discussed in the context of experiments and first-principle calculations. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 70 (1997), S. 2250-2252 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The behavior of the oxidation-induced stacking-fault ring (OSF ring) in Czochralski (CZ)-grown silicon crystals is predicted based on the dynamics of point defects during growth. Preexponential constants for the equilibrium point defect concentrations and diffusivities are determined by fitting the predictions of the model to a single set of experimental data for OSF-ring dynamics. Other experimental data is well fit by this model. Moreover, point defect properties used are consistent with other estimates. Asymptotic analysis of the point defect model leads to a closed-form expression for the dependence of the OSF-ring location on processing conditions and thermophysical properties of point defects at the melting temperature. These results indicate that differentiation between defect types in CZ-grown material can be done entirely on the basis of point defect dynamics. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 1544-1546 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of boron doping on the position of the oxidation-induced stacking-fault ring (OSF ring) during Czochralski (CZ) crystal growth is described using a comprehensive model for point defect dynamics including the role of boron. The important interactions between boron atoms and intrinsic point defects are selected on the basis of tight-binding estimates for the energies of formation for boron-point defect structures. Intrinsic point defect properties used are taken from a parameterized model of point defect dynamics for predicting OSF-ring dynamics. Entropies of formation for boron-point defect species are obtained by fitting the predictions of the model to experimental data for OSF-ring dynamics. The model successfully predicts OSF-ring dynamics for a variety of doping and growth conditions. The effect of boron on the OSF ring is caused by the retardation of point defect recombination at temperatures near the melting point caused by dynamic storage of self-interstitials in complexes with boron. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 43 (1995), S. 275-276 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 2191-2209 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Local similarity solutions are presented for the stress field of a fluid described by the Oldroyd-B viscoelastic constitutive equation near the singularity caused by the intersection of a planar free surface and a solid surface along which Navier's slip law holds, the partial-slip/slip problem. For the case where the velocity field is given by Newtonian kinematics, the elastic stress field is predicted to have a logarithmic singularity as the point of attachment of the free surface is approached. Asymptotic analysis for the fully-coupled flow, where the stress and flow fields are determined simultaneously, results in a local form for the flow and elastic stress fields that is similar in form to that for the decoupled case. For both the coupled and decoupled flow problems, the strength of the singularity depends on the dimensionless solvent viscosity and the slip coefficient, but not upon the Deborah number. The asymptotic results for the coupled flow differ from the predictions with Newtonian kinematics in that the strength of the singularity in the rate-of-strain and elastic stress fields scales with the inverse of the dimensionless solvent viscosity, and suggest that calculations with decreasing solvent viscosity become increasingly difficult. The fully-coupled analysis also suggests that the asymptotic behavior in the limit of vanishing solvent viscosity, the UCM limit, is qualitatively different from that for finite values of the solvent viscosity. The structure of the flow and stress fields for both the coupled and decoupled flow problems is reproduced by finite element calculations. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 1235-1247 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The local solution behavior near corners formed by the intersection of a slip surface with either a no-slip or a shear-free boundary is analyzed by finite element calculations of the two-dimensional flow of an inertialess Newtonian fluid in several model flow geometries; these flows are the flow in a tapered contraction, a sudden expansion and the extrudate swell from a planar die. Local finite element mesh refinement based on irregular, embedded elements is used to obtain extremely fine resolution of the velocity and pressure fields near the region where there is a sudden change in boundary condition. The calculations accurately reproduce the expected asymptotic behavior for a shear-free surface intersecting a no-slip boundary, where the solution is given by a self-similar form for the velocity and pressure fields. Replacing the shear-free condition with a slip condition yields a similar form for the local velocity and pressure fields and indicates that the slip boundary behaves, to leading order, as a shear-free surface. Calculations for a slip boundary intersecting a shear-free surface yield similar results, with the local behavior being given by asymptotic analysis for two shear-free surfaces intersecting to form a wedge. These results suggest that replacing the no-slip boundary condition in planar Newtonian die swell with a slip boundary condition can give rise to local behavior of velocity gradients and pressure which is more singular than the flow created with no-slip boundary conditions. This prediction is confirmed by calculations of Newtonian die swell with slip. These calculations also demonstrate that the local solution in Newtonian die swell is sensitive to the details of the numerical method. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...