ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Zea mays  (3)
  • Springer  (3)
  • American Association for the Advancement of Science
  • American Chemical Society
  • Blackwell Publishing Ltd
  • 1995-1999  (3)
  • 1975-1979
Collection
Publisher
  • Springer  (3)
  • American Association for the Advancement of Science
  • American Chemical Society
  • Blackwell Publishing Ltd
Years
Year
  • 1
    ISSN: 1617-4623
    Keywords: Key wordsUstilago maydis ; Zea mays ; Corn smut ; Meiosis ; Cell cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The heterobasidiomycetes responsible for plant smuts obligatorily require their hosts for the completion of the sexual cycle. Accordingly, the sexual cycle of these fungi could so far be studied only by infecting host plants. We have now induced Ustilago maydis, the causative agent of corn smut, to traverse the whole life cycle by growing mixtures of mating-compatible strains of the fungus on a porous membrane placed on top of embryogenic cell cultures of its host Zea mays. Under these conditions, mating, karyogamy and meiosis take place, and the fungus induces differentiation of the plant cells. These results suggest that embryogenic maize cells produce diffusible compounds needed for completion of the sexual cycle of U. maydis, as the plant does for the pathogen during infection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Transactivation ; Zea mays ; VP16 ; Nuclear receptors ; Heliothis EcR/GR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transformation with a chimeric receptor containing the glucocorticoid transactivation and DNA-binding domains fused to an ecdysteroid receptor ligand-binding domain permits ecdysone agonist-inducible gene expression in monocotyledonous plant cells. The inducible system is based on the specific activation of a chimeric receptor containing the ligand-binding domain of the Heliothis virescens ecdysteroid receptor and the inducer RH5992 (a 20-hydroxyecdysone agonist). RH5992 is an non-steroidal agrochemical with a high specificity for lepidopteran ecdysone receptors. Addition of RH5992 to transformed cells results in high levels of inducible expression in a ligand-specific manner, particularly when the effector receptor is coupled to the strong transactivator VP16. A chimeric construct containing the Drosophila ecdysone ligand-binding domain failed to activate reporter gene activity with RH5992, while activation was observed in the presence of muristeroneA. The system described provides the basis for an inducible gene expression system that is compatible with agricultural use.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: elicitor ; hydroxyproline-rich glycoproteins ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Hrgp (hydroxyproline-rich glycoprotein) gene codes in maize for one of the most abundant proteins of the cell wall. HRGPs may contribute to the structural support of the wall and they have also been involved in plant defense mechanisms. This second aspect has been tested for the Hrgp gene in maize where, in contrast with the situation in dicot species, the gene is encoded by a single-copy sequence. Hrgp mRNA accumulation is induced in maize suspension-cultured cells by elicitors, isolated either from maize pathogenic or non-pathogenic fungi. The induction of Hrgp mRNA accumulation by elicitor extracted from Fusarium moniliforme has been studied in detail. The level of induction depends on elicitor concentration and remains high until at least 24 h. Ethylene and protein phosphorylation appear to be involved in the transduction pathway of Hrgp gene activation by the F. moniliforme elicitor but not by 5 µM methyl jasmonate or 1 mM salycilic acid. Different compounds known to participate in plant stress responses such as ascorbic acid or reduced glutathione have also a positive effect on Hrgp mRNA accumulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...