ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 20 (1980), S. 65-69 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A prediction technique for gas permeability from polymer structure has been developed on the basis of a specific free volume diffusion theory. In this theory, the free volume available per unit mass in a polymer structure controls the rate of gas diffusion and, hence, its rate of permeation. The smaller this specific free volume is, the more difficult the gas diffusion and, thus, the better its barrier to gases becomes. Specifically, the theory predicts a linear relationship between log (permeability) and (-1/specific volume). A number of existing polymers covering six orders of magnitude in CO2 permeability and O2 permeability were found to follow this correlation. The specific free volume in a polymer was obtained from group contribution calculations. As a result, the gas permeabilities become predictable from the specific volume in a polymer which, in turn, varies with its molecular structure. The advent of this specific free volume theory for gas permeation simplifies greatly the selection of barrier materials for packaging applications. For a given barrier application, a critical specific free volume is first defined from its gas barrier requirement. The polymer structures having specific free volumes smaller than the critical value are then identified. These are the polymers that would have the necessary barrier performance. By this theory, molecular structures, with string polar-to-polar interactions and hydrogen-bonding forces are found to be good barriers to CO2 and O2.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...