ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Arabidopsis ; Female gametophyte ; Pollen ; Reproduction ; Spaceflight
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Reproductive development in Arabidopsis thaliana (L.) Heynh. cv. Columbia plants was investigated under spaceflight conditions on shuttle mission STS-51. Plants launched just prior to initiation of the reproductive phase developed flowers and siliques during the 10-d flight. Approximately 500 flowers were produced in total by the 12 plants in both the ground control and spaceflight material, and there was no significant difference in the number of flowers in each size class. The flower buds and siliques of the spaceflight plants were not morphologically different from the ground controls. Pollen viability tests immediately post-flight using fluorescein diacetate indicated that about 35% of the pollen was viable in the spaceflight material. Light-microscopy observations on this material showed that the female gametophytes also had developed normally to maturity. However, siliques from the spaceflight plants contained empty, shrunken ovules, and no evidence of pollen transfer to stigmatic papillae was found by light microscopy immediately post-flight or by scanning electron microscopy on fixed material. Short stamen length and indehiscent anthers were observed in the spaceflight material, and a film-like substance inside the anther that connected to the tapetum appeared to restrict the release of pollen from the anthers. These observations indicate that given appropriate growing conditions, early reproductive development in A. thaliana can occur normally under spaceflight conditions. On STS-51, reproductive development aborted due to obstacles in pollination or fertilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words:Arabidopsis ; Fertilization (in spaceflight) ; Ovule ; Pollen ; Pollination ; Seed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Plant reproduction is a complex developmental process likely to be disrupted by the unusual environmental conditions in orbital spacecraft. Previous results, reviewed herein, indicated difficulties in obtaining successful seed production in orbit, often relating to delayed plant development during the long-term growth necessary for a complete plant life cycle. Using short-duration exposure to spaceflight, we studied plant reproduction in Arabidopsis thaliana (L.) Heynh. during three flight experiments: CHROMEX-03 on STS-54 (6 d), CHROMEX-04 on STS-51 (10 d), and CHROMEX-05 on STS-68 (11 d). Plants were 13–14 d old (rosettes) at time of launch and initiated flowering shoots while in orbit. Plants were retrieved from the orbiters 2–3 h after landing and reproductive material was immediately processed for in-vivo observations of pollen viability, pollen tube growth, and esterase activity in the stigma, or fixed for later microscopy. Plants produced equal numbers of flowers to those controls growing on the ground but required special environmental conditions to permit fertilization and early seed development during spaceflight. In CHROMEX-03, plants were grown in closed plant growth chambers (PGCs), and male and female gametophyte development aborted at an early stage in the flight material. In CHROMEX-04, carbon dioxide enrichment was provided to the closed PGCs and reproductive development proceeded normally until the pollination stage, when there was an obstacle to pollen transfer in the spaceflight material. In CHROMEX-05, an air-exchange system was used to provide a slow purging of the PGCs with filtered cabin air. Under these conditions, the spaceflight plants apparently had reproductive development comparable to the ground controls, and immature seeds were produced. In every aspect examined, these seeds are similar to those produced by the ground control plants. The results suggest that if the physical environment around the plant under spaceflight conditions meets the physiological demands of the plant, then reproductive development can proceed normally on orbit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Key words: Anther ; Calcium ; Male sterility ; Oryza (fertility) ; Pollen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Potassium antimonate was used to locate Ca2+ in fertile and sterile anthers of a photoperiod-sensitive genic male-sterile rice (Oryza sativa L. japonica). During the development of fertile anthers, abundant calcium precipitates accumulated in the anther walls and on the surface of pollen grains and Ubish bodies at the late developmental stage of the microspore, but not in the cytoplasm of pollen grains. Following the accumulation of starch grains in pollen, calcium precipitates on pollen walls diminished and increased in parenchymatous cells of the connective tissue. In sterile anthers, calcium precipitates were abundant in the middle layer and endothecium, but not in the tapetum, as was found in fertile anthers. A special cell wall was observed between the tapetum and middle layer of sterile anthers that appeared to relate to distinctive calcium accumulation patterns and poor pollen wall formation in the loculi. The formation of different patterns of antimonate-induced calcium precipitates in the anthers of photoperiod-sensitive genic male-sterile rice indicates that anomalies in the distribution of calcium accumulation correlate with the failure of pollen development and pollen abortion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Arabidopsis ; Pollen ; Vegetative cytoplasm ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation inArabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultra-structure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyo-somes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...