ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTROPHYSICS  (847)
  • ENERGY PRODUCTION AND CONVERSION  (480)
  • Geophysics  (384)
  • 1995-1999  (462)
  • 1980-1984  (1,249)
  • 1940-1944
  • 1920-1924
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2004-12-03
    Description: Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).
    Keywords: Geophysics
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 147-150; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: During its full-sky survey, the Energetic Gamma Ray Experiment Telescope (EGRET) high-energy instrument aboard the Compton Gamma-Ray Observatory detected gamma-ray emission in the energy range above 30 MeV from a source identified as the blazar PKS 0420-014. This object was observed during two separate viewing periods in 1992 February/March and May/June. An intensity decrease above 100 MeV of a factor of at least 1.5 from a maximum of (5.0 +/- 1.4) x 10(exp -7) photons 1 sq cm/s was observed during that time interval indicating extensive variability. The photon spectrum in the range between 30 and 10,000 MeV at the time of the maximum intensity is well represented by a power law with an exponent of -1.9 +/- 0.3. Some similarities with other EGRET detected blazars are briefly discussed.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 438; 2; p. 659-662
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Keywords: ASTROPHYSICS
    Type: Extragalactic radio sources; Aug 03, 1981 - Aug 07, 1981; Albuquerque, NM
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-15
    Description: Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.
    Keywords: Geophysics
    Type: Paper-98JD01155 , Journal of Geophysical Research (ISSN 0148-0227); 103; D16; 19,649-19,661
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: We present radio observations of the gravitational lens PKS 1830-211 at 8.4 and 15 GHz acquired using the Very Large Array. The observations were made over a 13 month period. Significant flux density changes over this period provide strong constraints on the time delay between the two lensed images and suffest a value of 44 +/- 9 days. This offers new direct evidence that this source is indeed a gravitational lens. The lens distance is dependent upon the model chosen, but reasonable limits on the mass of the lensing galaxy suggest that it is unlikely to be at a redshift less than a few tenths, and may well be significantly more distant.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 444; 2; p. 561-566
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth's hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source, as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio (g kg(exp -l)), is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere's dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly-resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage. The data were obtained at the Atmospheric Radiation Measurement Site (CART) by the groundbased Department of Energy/Sandia National Laboratories lidar (CART Raman lidar or CARL) and Goddard Space Flight Center Scanning Raman Lidar (SRL). A detailed discussion of the SRL and CARL performance during the IOPs is given by others in this meeting.
    Keywords: Geophysics
    Type: Nineteenth International Laser Radar Conference; 403-406; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: Ion acceleration and flux increase associated with substorm energetic particle injections are investigated on the basis of geosynchronous observations and test proton orbits in the dynamic fields of a three dimensional magnetohydrodynamic simulation of neutral line formation and dipolarization in the magnetotail. The energetic particle flux changes obtained from the test particle orbits agree well with observations that demonstrate rapid ion flux increases at energies of above 20 keV. The injection region inferred from the test particles has a sharp earthward boundary and a sharp ragged tailward boundary. The earthward portion of the enhanced ion flux can be traced to the enhanced cross-tail electric field associated with the near-earth x-type neutral line. Due to the rapid earthward motion of accelerated ions away from the neutral line, this boundary is displaced earthward to where the energetic ions become more adiabatic in the stronger dipolar field.
    Keywords: Geophysics
    Type: ; 243-248
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-18
    Description: NGC 7027 was observed with a multichannel grating spectrometer from 5.2 to 7.5 microns at a spectral resolving power of 120-200. Two new dust emission features are resolved at 5.62 and 6.95 microns, and for the first time the Ni II fine-structure line at 6.64 microns is detected. It is shown that a single molecular dust constituent might account for six of the nine observed dust features between 2 and 14 microns. The strength of the Ni II line indicates either that Ni is not depleted in the neutral gas, or that the line is formed at high density.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 274; 666-670
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-18
    Description: A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-18
    Description: Accretion models of planet formation and the early cratering history of the solar system suggest that planet formation is accompanied by a cloud of debris resulting from accumulation and fragmentation. A rough estimate of the infrared luminosities of debris clouds is presented for comparison with measured 10-micron luminosities of young stars. New measurements of 13 F, G, and K main-sequence stars of the Ursa Major Stream, which is thought to be about 270-million years old, place constraints on the amount of debris which could be present near these stars.
    Keywords: ASTROPHYSICS
    Type: Icarus; 50; Apr. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...