ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER  (27)
  • Astrophysics  (25)
  • 1995-1999  (31)
  • 1985-1989  (21)
  • 1
    Publication Date: 2013-08-31
    Description: When computing the flow around complex three dimensional configurations, the generation of the mesh is the most time consuming part of any calculation. With some meshing technologies this can take of the order of a man month or more. The requirement for a number of design iterations coupled with ever decreasing time allocated for design leads to the need for a significant acceleration of this process. Of the two competing approaches, block-structured and unstructured, only the unstructured approach will allow fully automatic mesh generation directly from a CAD model. Using this approach coupled with the techniques described in this paper, it is possible to reduce the mesh generation time from man months to a few hours on a workstation. The desire to closely couple a CFD code with a design or optimization algorithm requires that the changes to the geometry be performed quickly and in a smooth manner. This need for smoothness necessitates the use of Bezier polynomials in place of the more usual NURBS or cubic splines. A two dimensional Bezier polynomial based design system is described.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 29-43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Langley Research Center, ICASE(LaRC Workshop on Adaptive Grid Methods; p 181-200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: During the past decade interplanetary dust particles (IDPS) have been collected in the earth's stratosphere. Isotopic studies of these particles have demonstrated that many of them are greatly enriched in deuterium and at least some of them carry this enrichment in smaller subcomponents. Deuterium enrichments of a similar magnitude are seen in simple molecules in interstellar clouds. Deuterium enrichment in IDPs can be taken as evidence for the presence of interstellar material. It is not clear at this time whether the carriers of the isotopic anomalies represent true, unaltered interstellar dust grains, or whether they represent an altered component with a molecular 'memory' of original interstellar grains. The spectra of different components in the collected dust provide suggestive matches to similar components evident in the astronomical spectra of dust in comets, dense molecular clouds, and emission nebulae. The known extraterrestrial nature of the particles, the possible presence of interstellar material in them, and their spectral similarity to many astronomical objects all argue that the collected IDPs provide useful analogs for the modelling of interstellar dust.
    Keywords: Astrophysics
    Type: NASA-TM-112437 , NAS 1.15:112437 , Interstellar Dust; 403-413
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: We compare production rates of H20 derived from International Ultraviolet Explorer (IUE) spectra from multiple apparitions of 2 comets, 2P/Encke and 9P/Tempel 1, whose orbits are in near-resonance with that of the Earth. Since model-induced errors are primarily a function of observing geometry, the close geometrical matches afforded by the resonance condition results in the cancellation of such errors when taking ratios of production rates. Giving careful attention to the variation of model parameters with solar activity, we find marginal evidence of change in 2P/Encke: a 1-sigma pre-perihelion decrease averaging 4%/revolution over 4 apparitions from 1980-1994, and a 1-sigma post-perihelion increase of 16%/revolution for 2 successive apparitions in 1984 and 1987. We find for 9P/Tempel 1, however, a 7-sigma decrease of 29%/revolution over 3 apparitions from 1983-1994, even after correcting for a tracking problem which made the fluxes systematically low. We speculate on a possible association of the character of long-term brightness variations with physical properties of the nucleus, and discuss implications for future research.
    Keywords: Astrophysics
    Type: NASA-CR-201783 , NAS 1.26:201783
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The present work documents the experimental database of a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10. A total of 356 channels of pressure data, including static pressure orifices, pitot pressures, and exit flow rakes, along with oil flow and infrared thermography, provided a detailed experimental description of the flow. Mach 10 tests were performed for three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). For the higher contraction ratios, a large forward separation of the inflow boundary layer was observed, making the high contraction ratio configurations unsuitable for flight operation. A decrease in the freestream unit Reynolds number (Re) of only a factor of 2 led to a similar upstream separation. Although the presence of such large-scale separations leads to the question of whether the inlet is started, the presence of internal oblique swept shock interactions on the sidewalls seems to indicate that at least in the classical sense, the inlet is not unstarted. The laminar inflow boundary layer therefore appears to be very sensitive to increases in contraction ratio (CR) or decreases in Reynolds number; only the CR = 3 configuration with 0.25, and 50 percent cowl at Re = 2.15 x 10(exp 6) per foot operated 'on design'.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-4648 , L-17349 , NAS 1.15:4648
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Numerical simulation of unsteady flow in an axisymmetric subsonic shear layer is accomplished by solving the time-dependent compressible Navier-Stokes equations. The objective of the effort is to investigate by numerical means the influence of various flow parameters on the shear layer behavior. The parameters investigated include the velocity ratio of two streams, total temperature, and nozzle lip thickness. The computations are performed on a CRAY-IS computer using McCormack's explicit finite difference scheme. The computed results generally show qualitative agreement with experimental data.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 86-0202
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low Reynolds number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations by using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent airflow, includes the finite-rare surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent and binary mixtures and single-species gas. An expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in the absence of slip.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TP-2452 , L-15952 , NAS 1.60:2452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TP-3476 , L-17347 , NAS 1.60:3476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: The present work documents the computational results for a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall-compression scramjet inlet configuration at Mach 10. The three-dimensional Navier-Stokes code SCRAMIN was chosen for the computational portion of the study because it uses a well-known and well-proven numerical scheme and has shown favorable comparison with experiment at Mach numbers between 2 and 6. One advantage of CFD was that it provided flow field data for a detailed examination of the internal flow characteristics in addition to the surface properties. The experimental test matrix at mach 10 included three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). Computational data for two of these configurations (the contraction ratio of 3, Re = 2.15 x 10 (exp 6) per foot, at two cowl positions) are presented along with a detailed analysis of the flow interactions in successive computational planes.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-4602 , L-17348 , NAS 1.15:4602
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-195434 , E-9445 , NAS 1.26:195434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...