ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (3)
  • AIRCRAFT DESIGN, TESTING AND PERFORMANCE  (1)
  • 1995-1999
  • 1985-1989  (4)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A review of several applications of Computational Fluid Dynamics (CFD) to various aspects of aerodynamic design recently carried out at Grumman is presented. The emphasis is placed on project-oriented applications where the ease of use of the methods and short start-to-completion times are required. Applications cover transonic wing design/optimization, wing mounted stores load prediction, transonic buffet alleviation, fuselage loads estimation, and compact offset diffuser design for advanced aircraft configurations. Computational methods employed include extended transonic small disturbance (automatic grid embedding) formulation for analysis/design/optimization and a thin layer Navier-Stokes formulation for both external and internal flow analyses.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 133-152
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: The dominance of body-like shapes for hypersonic vehicles places emphasis on better understanding of pertinenet body flow physics. Computational methods are implemented to enhance the knowledge of drag components generated by the production of lift forces at hypersonic speeds. Three forebody shapes are examined to identify the effects related to body shape parameters. A Navier-Stokes code and classical Newtonian theory code provide predictions of the polar shapes upon which conclusions are drawn. In particular, it is noted that hypersonic body polar shapes are somewhat irregular; the result of incidence-induced form drag. Test data which supports this finding is identified. The means for reducing hypersonic body lift-induced drag are also identified, along with applied computational schemes that can reduce the cost of a configuration design program.
    Keywords: AERODYNAMICS
    Type: SAE PAPER 892345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 85-0425
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: NASA Langley and NASA Ames-Dryden have defined a variable-sweep transition-flight experiment utilizing the F-14 aircraft to enhance understanding of the interaction of crossflow and Tollmien-Schlichting instabilities on a laminar-boundary-layer transition. The F-14 wing outer panel will be modified to generate favorable pressure gradients on the upper wing surface over a wide range of flight conditions. Extensive computations have been performed using two-dimensional and three-dimensional transonic analysis codes. Flight-test and computational data are compared and shown to validate the applicability of the three-dimensional codes (WBPPW and TAWFIVE). In addition, results from two preliminary glove designs derived from two different approaches to the design problem are presented. Advantages and disadvantages of each approach are identified, and it is concluded that coupling an analysis code with an automated design procedure yields a powerful code with distinct advantages over a 'cut-and-dry' approach.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 85-0426
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...