ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cells, Cultured  (3)
  • American Association for the Advancement of Science (AAAS)  (3)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 1995-1999  (1)
  • 1985-1989  (2)
  • 1940-1944
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (3)
  • American Chemical Society
  • American Institute of Physics (AIP)
Years
  • 1995-1999  (1)
  • 1985-1989  (2)
  • 1940-1944
  • 2005-2009  (1)
Year
  • 1
    Publication Date: 1997-08-08
    Description: TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheridan, J P -- Marsters, S A -- Pitti, R M -- Gurney, A -- Skubatch, M -- Baldwin, D -- Ramakrishnan, L -- Gray, C L -- Baker, K -- Wood, W I -- Goddard, A D -- Godowski, P -- Ashkenazi, A -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, South San Francisco, CA 94080-4918, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242611" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; GPI-Linked Proteins ; Glycosylphosphatidylinositols/metabolism ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1985-02-01
    Description: Potomac horse fever, a disease characterized by fever, anorexia, leukopenia, and occasional diarrhea, is fatal in approximately 30 percent of affected animals. The seasonal occurrence of the disease (June to October) and evidence of antibodies to the rickettsia Ehrlichia sennetsu in the serum of convalescing horses suggested that a related rickettsia might be the causative agent. Such an agent was isolated in cultured blood monocytes from an experimentally infected pony. This intracytoplasmic organism was adapted to growth in primary cultures of canine blood monocytes. A healthy pony inoculated with these infected monocytes also developed the disease. The organism was reisolated from this animal which, at autopsy, had pathological manifestations typical of Potomac horse fever. Cross serologic reactions between the newly isolated agent and antisera to 15 rickettsiae revealed that it is related to certain members of the genus Ehrlichia, particularly to Ehrlichia sennetsu. Since the disease occurs in other parts of the United States as well as in the vicinity of the Potomac River, and since it has also been reported in Europe, the name equine monocytic ehrlichiosis is proposed as being more descriptive.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holland, C J -- Ristic, M -- Cole, A I -- Johnson, P -- Baker, G -- Goetz, T -- New York, N.Y. -- Science. 1985 Feb 1;227(4686):522-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3880925" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/immunology ; Cells, Cultured ; Cross Reactions ; Ehrlichia/growth & development/immunology/*isolation & ; purification/ultrastructure ; Fluorescent Antibody Technique ; Horse Diseases/blood/*microbiology/transmission ; Horses ; Monocytes/*microbiology ; Rickettsiaceae/*isolation & purification ; Rickettsiaceae Infections/blood/microbiology/transmission/*veterinary ; Terminology as Topic ; Vacuoles/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1986-03-07
    Description: The mechanism by which the estrogen receptor and other steroid hormone receptors regulate gene expression in eukaryotic cells is not well understood. In this study, a complementary DNA clone containing the entire translated portion of the messenger RNA for the estrogen receptor from MCF-7 human breast cancer cells was sequenced and then expressed in Chinese hamster ovary (CHO-K1) cells to give a functional protein. An open reading frame of 1785 nucleotides in the complementary DNA corresponded to a polypeptide of 595 amino acids and a molecular weight of 66,200, which is in good agreement with published molecular weight values of 65,000 to 70,000 for the estrogen receptor. Homogenates of transformed Chinese hamster ovary cells containing a protein that bound [3H]estradiol and sedimented as a 4S complex in salt-containing sucrose gradients and as an 8 to 9S complex in the absence of salt. Interaction of this receptor-[3H]estradiol complex with a monoclonal antibody that is specific for primate ER confirms the identity of the expressed complementary DNA as human estrogen receptor. Amino acid sequence comparisons revealed significant regional homology among the human estrogen receptor, the human glucocorticoid receptor, and the putative v-erbA oncogene product. This suggests that steroid receptor genes and the avian erythroblastosis viral oncogene are derived from a common primordial gene. The homologous region, which is rich in cysteine, lysine, and arginine, may represent the DNA-binding domain of these proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greene, G L -- Gilna, P -- Waterfield, M -- Baker, A -- Hort, Y -- Shine, J -- CA-02897/CA/NCI NIH HHS/ -- HD17103/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1986 Mar 7;231(4742):1150-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3753802" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Antibodies, Monoclonal ; Base Sequence ; Cells, Cultured ; Cloning, Molecular ; DNA/*metabolism ; Female ; Humans ; Molecular Weight ; Receptors, Estrogen/*genetics ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...