ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8)
  • Biochemistry  (8)
  • 1995-1999  (1)
  • 1985-1989  (7)
  • 1970-1974
  • 1965-1969
  • 1955-1959
  • 1940-1944
  • Computer Science  (8)
Collection
  • Articles  (8)
Keywords
Publisher
Years
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 6 (1985), S. 350-359 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A very efficient algorithm for determining the geometrically feasible binding modes of a flexible ligand molecule at the receptor site is presented. It is based on distance geometry but maintains the requirements of three dimensions. The distance geometry manipulation can superimpose two bodies without explicitly calculating the necessary rigid rotation and translation. The whole conformation space of a flexible molecule can be efficiently examined by considering only a finite number of conformational points. The method is suitable only when the criterion for superposition is some minimum distance limit. It cannot, however, give the exact distance between two points in two different bodies.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In an earlier article8 the need was demonstrated for atomic physicochemical properties for three dimensional structure directed quantitative structure-activity relationships, and it was shown how atomic parameters can be developed for successfully evaluating the molecular octanol-water partition coefficient, which is a measure of hydrophobicity. In this work we report more refined atomic values of octanol-water partition coefficients derived from nearly twice the number of compounds. Carbon, hydrogen, oxygen, nitrogen, sulfur and halogens are divided into 110 atom types of which 94 atomic values are evaluated from 830 molecules by least squares. These values gave a standard deviation of 0.470 and a correlation coefficient of 0.931. These parameters predicted the octanol-water partition coefficient of 125 compounds with a standard deviation of 0.520 and a correlation coefficient of 0.870. There is only a correlation coefficient of 0.432 between the atomic octanol-water partition coefficients and the atomic contributions to molar refractivity over the 93 atom types used for both the properties. This suggests that both parameters can be used simultaneously to model intermolecular interactions. We evaluated the CNDO/2 gross atomic charge distribution over several molecules to check the validity of our classification. We found that the charge density on the heteroatoms in conjugated systems is strongly affected by the presence of similar atoms in the conjugation which suggests it should be incorporated as a separate parameter in evaluating the partition coefficient.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 486-500 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In the search for new drugs, it often occurs that the binding affinities of several compounds to a common receptor macromolecule are known experimentally, but the structure of the receptor is not known. This article describes an extraordinarily objective computer algorithm for deducing the important geometric and energetic features of the common binding site, starting only from the chemical structures of the ligands and their observed binding. The user does not have to propose a pharmacophore, guess the bioactive conformations of the ligands, or suggest ways to superimpose the active compounds. The method takes into account conformational flexibility of the ligands, stereospecific binding, diverse or unrelated chemical structures, inaccurate or qualitative binding data, and the possibility that chemically similar ligands may or may not bind to the receptor in similar orientations. The resulting model can be viewed graphically and interpreted in terms of one or more binding regions of the receptor, each preferring to be occupied by various sorts of chemical groups. The model always fits the given data completely and can predict the binding of any other ligand, regardless of chemical structure. The method is an outgrowth of distance geometry and Voronoi polyhedra site modeling but incorporates several novel features. The geometry of the ligand molecules and the site is described in terms of intervals of internal distances. Determining the site model consists of reducing the uncertainty in the interregion distance intervals, and this uncertainty is described as intervals of intervals. Similarly, the given binding affinities and their experimental uncertainties are treated as intervals in the affinity scale. The final site model specifies an entire region of interaction energy parameters that satisfy the training set rather than a single set of parameters. Predicted binding for test compounds results in an interval which, when compared to the experimental interval, may be correct, incorrect, or vague. There is a pervasive ternary logic involved in the assessment of predictions, in the search for a satisfactory model, and in judging whether a given molecule may bind in a particular orientation: true, false, or maybe. The approach is illustrated on an extremely simple artificial example and on a real data set of cocaine analogues binding to a nerve membrane receptor in vitro. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 7 (1986), S. 565-577 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Earlier we showed (A. K. Ghose and G. M. Crippen, J. Med. Chem., 28, 333, 1985) the necessity of atomic physicochemical parameters in three-dimensional receptor mapping. Here we derive more refined and widely applicable hydrophobicity parameters. Carbon, hydrogen, oxygen, nitrogen, sulfur, and halogens are classified into 110 atom types. Among these, the hydrophobic contributions of 90 atom types have been evaluated from the log P(water-octanol) values of 494 molecules, using the additive model and leastsquares technique. It gave a standard deviation of 0.347, a correlation coefficient of 0.962, and an explained variance of 0.908. These atomic values were used to predict the log P values of 69 compounds. The predicted values showed a standard deviation of 0.404 and a correlation coefficient of 0.896. This work has been compared with more conventional approaches.
    Additional Material: 7 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 10 (1989), S. 673-682 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new and accurate method for calculating the geometrically allowed modes of binding of a ligand molecule to a Voronoi site model is reported. It is shown that the feasibility of the binding of a group of atoms to a Voronoi site reduces to a simple set of linear and quadratic inequalities and quadratic equalities which can be solved by minimization of a simple function. Newton's numerical method of solution coupled to a line search proved to be successful. Moreover, we have developed efficient molecular and site data bases to discard quickly infeasible binding modes without time-consuming numerical calculation. The method is tested with a data set consisting of the binding constants for a series of biphenyls binding to prealbumin. After determination of the conformation space of the molecules and proposal of a Voronoi site geometry, the geometrically feasible modes are calculated and the energy interaction parameters determined to fit the observed binding energies to the site within experimental error ranges. We actually allowed these ranges to vary in order to study the influence of their broadness on the site geometry and found that as they increase, one can first model the receptor as a three-region site then as a single region site, but never as a two-region site.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 10 (1989), S. 896-902 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: There are many methods in the literature for calculating conformations of a molecule subject to geometric constraints, such as those derived from two-dimensional NMR experiments. One of the most general ones is the EMBED algorithm, based on distance geometry, where all constraints except chirality are converted into upper and lower bounds on interatomic distances. Here we propose a variation on this where the molecule is assumed to have fixed bond lengths, vicinal bond angles and chiral centers; and these holonomic constraints are enforced separately from the experimental constraints by being built into the mathematical structure of the problem. The advantages of this approach are: (1) for molecules having large rigid groups of atoms, there are substantially fewer variables in the problem than all the atomic coordinates; (2) rigid groups achieve in the end more accurate local geometry (e.g., planar aromatic rings are truly planar, chiral centers always have their correct absolute chirality); (3) it is easier to detect inconsistencies between the holonomic and the experimental constraints; and (4) when generating a random sampling of conformers consistent with all constraints, the probability of achieving satisfactory structures tends to be greater.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 8 (1987), S. 943-955 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A frequently occurring problem in drug design and enzymology is that the binding constants for several compounds to the same site are known, but the geometry and energetic interactions of the site are not. This paper presents in detail a novel approach to the problem which accurately but compactly represents the allowed conformation space of each ligand, accurately depicts their three-dimensional structures, and realistically allows each ligand to adopt the conformation and positioning in the site which is most favorable energetically. The investigator supplies only the ligand structures and observed binding free energies, along with a proposed site geometry. With no further assumptions about how the ligands bind and what parts of the ligands are important in determining the binding, the algorithm fits the observed binding energies without leaving outliers, predicts exactly how each of the given ligands binds in the site, and predicts the strength and mode of binding of new compounds, regardless of chemical similarity to the original set of ligands. The method is illustrated by devising a simple site that accounts for the binding of five polychlorinated biphenyls to thyroxine binding prealbumin. This model then predicts the binding energies correctly for an additional six biphenyls, and fails on one compound.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 8 (1987), S. 972-981 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: It is quite easy to propose an empirical potential for conformational analysis such that given crystal structures lie near local minima. What is much more difficult, is to devise a function such that the native structure lies near a relatively deep local minimum, at least in some neighborhood of the native in conformation space. An algorithm is presented for finding such a potential acting on proteins where each amino acid residue is represented by a single point. When the given structure is either an α-helical, β-strand, or hairpin bend segment of pancreatic trypsin inhibitor, the resulting potential function in each case possesses a deep minimum within 0.10 Å of the native conformation. The improved energy embedding algorithm locates a marginally better minimum in each case only 0.1-1.3 Å away from the respective native state. In other words, this potential function guides a conformational search toward structures very close to the native over a wide range of conformation space.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...