ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nitrogen partitioning  (2)
  • Nutrients  (2)
  • 1995-1999  (1)
  • 1985-1989  (3)
  • 1975-1979
  • 1905-1909
Collection
Publisher
Years
  • 1995-1999  (1)
  • 1985-1989  (3)
  • 1975-1979
  • 1905-1909
Year
  • 1
    ISSN: 1432-1939
    Keywords: Key words Carnivorous plants ; Pitcher plants ; Insect nitrogen ; Nitrogen partitioning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study investigated the nitrogen (N) acquisition from soil and insect capture during the growth of three species of pitcher plants, Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. 15N/14N natural abundance ratios (δ15N) of plants and pitchers of different age, non-carnivorous reference plants, and insect prey were used to estimate proportional contributions of insects to the N content of leaves and whole plants. Young Nepenthes leaves (phyllodes) carrying closed pitchers comprised major sinks for N and developed mainly from insect N captured elsewhere on the plant. Their δ15N values of up to 7.2‰ were higher than the average δ15N value of captured insects (mean δ15N value = 5.3‰). In leaves carrying old pitchers that are acting as a N source, the δ15N decreased to 3.0‰ indicating either an increasing contribution of soil N to those plant parts which in fact captured the insects or N gain from N2 fixation by microorganisms which may exist in old pitchers. The δ15N value of N in water collected from old pitchers was 1.2‰ and contained free amino acids. The fraction of insect N in young and old pitchers and their associated leaves decreased from 1.0 to 0.3 mg g−1. This fraction decreased further with the size of the investigated tiller. Nepenthes contained on average 61.5 ± 7.6% (mean ± SD, range 50–71%) insect N based on the N content of a whole tiller. In the absence of suitable non-carnivorous reference plants for Cephalotus, δ15N values were assessed across a developmental sequence from young plants lacking pitchers to large adults with up to 38 pitchers. The data indicated dependence on soil N until 4 pitchers had opened. Beyond that stage, plant size increased with the number of catching pitchers but the fraction of soil N remained high. Large Cephalotus plants were estimated to derive 26 ± 5.9% (mean ± SD of the three largest plants; range: 19–30%) of the N from insects. In Cephalotus we observed an increased δ15N value in sink versus source pitchers of about 1.2‰ on average. Source and sink pitchers of Darlingtonia had a similar δ15N value, but plant N in this species showed δ15N signals closer to that of insect N than in either Cephalotus or Nepenthes. Insect N contributed 76.4 ± 8.4% (range 57–90%) to total pitcher N content. The data suggest complex patterns of partitioning of insect and soil-derived N between source and sink regions in pitcher plants and possibly higher dependence on insect N than recorded elsewhere for Drosera species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Forest decline ; Spruce ; Nutrients ; Xylem sap
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nutrient relations (nitrogen, magnesium, calcium, potassium, and manganese) of the xylem sap of spruce trees, Picea abies (L.) Karst., growing at a healthy and a declining site in Northern Bavaria, were followed on a diurnal and seasonal basis between April and October 1985. There were significant differences between the two sites in the xylem sap concentrations of all elements investigated except nitrogen. Nutrient concentrations remained constant diurnally despite changes in transpiration and xylem water potential. However, during periods between precipitation events, concentrations of elements in xylem sap decreased with decreasing xylem water potential. Apparent differences in needle chlorosis of spruce trees at the two sites were associated with consistent differences in nutrient contents of their xylem sap and needles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 70 (1986), S. 466-474 
    ISSN: 1432-1939
    Keywords: Biennial plants ; Carbon partitioning ; Nitrogen partitioning ; Storage ; Harvest index
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Growth and nitrogen partitioning were investigated in the biennial monocarp Arctium tomentosum in the field, in plants growing at natural light conditions, in plants in which approximately half the leaf area was removed and in plants growing under 20% of incident irradiation. Growth quantities were derived from splined cubic polynomial exponential functions fitted to dry matter, leaf area and nitrogen data. Main emphasis was made to understanding of the significance of carbohydrate and nitrogen storage of a large tuber during a 2-years' life cycle, especially the effect of storage on biomass and seed yield in the second season. Biomass partitioning favours growth of leaves in the first year rosette stage. Roots store carbohydrates at a constant rate and increase storage of carbohydrates and nitrogen when the leaves decay at the end of the first season. In the second season the reallocation of carbohydrates from storage is relatively small, but reallocation of nitrogen is very large. Carbohydrate storage just primes the growth of the first leaves in the early growing season, nitrogen storage contributes 20% to the total nitrogen requirement during the 2nd season. The efficiency of carbohydrate storage for conversion into new biomass is about 40%. Nitrogen is reallocated 3 times in the second year, namely from the tuber to rosette leaves and further to flower stem leaves and eventually into seeds. The harvest index for nitrogen is 0.73, whereas for biomass it is only 0.19.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 77 (1988), S. 163-173 
    ISSN: 1432-1939
    Keywords: Forest decline ; Spruce (Picea abies) ; Nutrients ; Growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A declining, closed-canopy Picea abies (L.) Karst. stand produced as much crown biomass as a healthy stand, although some trees were chlorotic due to magnesium deficiency. The production of wood per unit of leaf area in both stands was related to the foliar magnesium concentration. Although leaf area index and climate were similar at both sites, stemwood production was 35% lower in the declining than in the healthy stand. Nutritional disharmony, rather than a deficiency in a single element, was identified as the mechanism for reduced tree vigor. The role of nutrient stress in forest decline was detected by partitioning the season into three periods reflecting different phenological stages: a canopy growth period in spring, a stem growth period in summer, and a recharge period during the non-growing season. Needle growth was associated with nitrogen supply. Most of the magnesium supply required to meet the demand for foliage growth was retranslocated from mature needles. Magnesium retranslocation was related to concentration of nitrogen and magnesium in those needles before bud break. Retranslocation from mature needles during the phase of canopy production resulted in chlorosis in initially green needles if the magnesium concentration before bud break was low. Nitrogen concentration in 0-year-old needles generally remained constant with increasing supply, indicating that foliage growth was restricted by the supply of nitrogen. In contrast, magnesium concentration generally increased with supply, indicating that magnesium supply for needle growth was sufficient. Much of the magnesium required for wood production was taken up from the soil because stored magnesium was largely used for canopy growth. Uptake at the declining site was probably limited because of restricted root expansion and lower soil magnesium compared to the healthy site. For this reason only wood growth was reduced at the declining site. Because the recharge of magnesium during the non-growing period is dependent on uptake from the soil, it was more limited at the declining that at the healthy stand. However, as nitrogen uptake from the atmosphere may account for an appreciable proportion of the total uptake, and as its supply in the soil at both sites was similar, an unbalanced recharge of nitrogen and magnesium may have occurred at the declining site. If mature needles are unable to recharge with magnesium in proportion to the uptake of nitrogen, chlorosis is likely to occur during the next canopy growth period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...