ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • barley  (4)
  • Springer  (4)
  • American Association for the Advancement of Science (AAAS)
  • Cell Press
  • Springer Nature
  • 1995-1999  (3)
  • 1985-1989  (1)
  • 1980-1984
Collection
Publisher
  • Springer  (4)
  • American Association for the Advancement of Science (AAAS)
  • Cell Press
  • Springer Nature
Years
  • 1995-1999  (3)
  • 1985-1989  (1)
  • 1980-1984
  • 1990-1994  (3)
Year
  • 1
    ISSN: 1573-5028
    Keywords: barley ; low temperature ; frost acclimation ; glycine-rich ; RNA-binding protein ; abscisic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A low-temperature-responsive gene, blt 801, isolated from a winter barley (Hordeum vulgare L.) cDNA library prepared from leaf meristematic tissue, was sequenced. The deduced amino acid sequence predicts a glycine-rich RNA-binding protein (GR-RNP) which was homology to stress-responsive GR-RNPs from several other plant species. BLT 801 is a two-domain protein, the amino-terminal domain comprises a consensus RNA-binding domain similar to that found in many eukaryotic genes and the carboxy-terminal domain is extremely glycine-rich (68.5% glycine). Blt 801 mRNA also accumulates in response to the phytohormone abscisic acid. The protein encoded by blt 801 has been produced as a recombinant fusion protein using a bacterial expression vector. The fusion protein, a chimaera of glutathione S-transferase and BLT 801, has been used in studies to determine nucleic acid binding and other characteristics. Binding studies with single-stranded nucleic acids show that BLT 801 has affinity for homoribopolymers G, A and U but not C, it also binds to single-stranded DNA and selects RNA molecules containing open loop structures enriched in adenine but low in cytosine. BLT 801 has a consensus motif for phosphorylation by cAMP protein kinase (PKA) at the junction between the two domains which can be phosphorylated by PKA in vitro and which, by analogy to animal studies, may have significance for controlling enzyme function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 33 (1997), S. 1013-1023 
    ISSN: 1573-5028
    Keywords: barley ; cold acclimation ; multigene family ; mRNA stability ; organ specific expression ; post-transcriptional regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transcription and translation inhibitors have been used to investigate the role of mRNA stability in the low-temperature-regulated expression of the post-transcriptionally controlled low temperature responsive barley gene family, blt14. Genomic clones (blt14.1, blt14.2) representing additional members of the blt14 gene family have been isolated and sequenced. Gene specific probes have been used to analyse the spatial expression of each individual member of the blt14 gene family. Findings indicate that all of the genes are responsive to low temperature, but the organ distribution is different for each gene. The results indicate that blt14.0 mRNA is stabilised by a low-temperature-dependent protein factor. Taken together, the results suggest that organ-specific post-transcriptional mechanisms are important in the low-temperature regulation of blt14 gene expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell, tissue and organ culture 5 (1985), S. 151-162 
    ISSN: 1573-5044
    Keywords: Hordeum vulgare ; barley ; callus culture ; plant regeneration ; somatic embryogenesis ; organogenesis ; apical meristem
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Callus cultures were initiated from apical meristem explants of one to four-week-old aseptically-grown barley (Hordeum vulgare L. cv. Atlas 57) plants. Embryogenic callus and plants were produced in three separate experiments; the cultures have retained regenerative capacity for three years after initiation. Our results demonstrate that explants other than immature embryos are embryogenically competent in barley and that regeneration occurs by both somatic embryogenesis and organogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: barley ; cold ; electrophoretic mobility shift assay ; lipid transfer protein ; low temperature ; promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The blt4 barley gene family encodes non-specific lipid transfer proteins and has been shown, by in situ localisation, to be expressed in the epidermal cells of leaves. The transcriptionally controlled, low-temperature-responsive member of this gene family, blt4.9, is predominantly expressed in shoot meristems. The promoter region (1938 bp) of blt4.9 contains sequence motifs which have been implicated in responses to low temperature, abscisic acid and other environmental factors. Deletion analysis showed that a 42 bp sequence proximal to, but not including, the CAAT and TATA boxes, confers enhanced low-temperature response to a reporter gene in a barley shoot explant transient expression system. Other promoter regions were shown to contain negative and positive regulatory regions. Electrophoretic mobility shift analysis (EMSA) was used with nuclear proteins from either low-temperature- or control-temperature-treated plants to further investigate the blt4.9 promoter. Synthetic oligonucleotides were used to identify a hexanucleotide, CCGAAA, within the 42 bp, low-temperature-responsive promoter region, as the binding site of a low-mobility nuclear protein complex. This complex was present in nuclear extracts from both low-temperature-treated and control plants and was the only complex formed within this region. Mutation of the CCGAAA motif within the low-temperature-responsive 42 bp promoter sequence reduced low-temperature responsiveness to basal levels. A related upstream element, CCGAC, known to be a low-temperature-responsive element in other plants, did not bind to nuclear proteins in this study. It is proposed that the hexanucleotide CCGAAA, at -195 from the first ATG, is involved in the low-temperature response of blt4.9 in barley.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...