ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1990-1994  (1)
Collection
Years
Year
  • 1
    Publication Date: 1997-06-01
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Workshop on the Martian Surface and Atmosphere Through Time; p 41-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: ATMIS (Atmospheric and Meteorological Instrumentation System) is a versatile suite of atmospheric instrumentation to be accommodated onboard the Netlander Mission slated for launch in 2005. Four Netlanders are planned to form a geophysical measurement network on the surface of Mars. The atmospheric sciences are among the scientific disciplines benefiting most of the network concept. The goal of the ATMIS instrument is to provide new data on the atmospheric vertical structure, regional and global circulation phenomena, the Martian Planetary Boundary Layer (PBL) and atmosphere-surface interactions, dust storm triggering mechanisms, as well as the climatological cycles of H2O, dust and CO2. To reach the goal of characterization of a number of phenomena exhibiting both spatial and temporal variations, simultaneous observations of multiple variables at spatially displaced sites Deforming a network D are required. The in situ observations made by the ATMIS sensors will be supported by extensive modeling efforts. Additional information is contained in the original extended abstract.
    Keywords: Geophysics
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-16
    Description: The Martian daytime soil surface temperature is governed primarily by the net irradiance balance and surface soil heat flux. Thus the outbreak of a cold air mass generates increased sensible heat flux that is conducive to daytime dissipation of the cold air mass thermal characteristics. Conceptual and scaling evaluations of this dissipation are provided while comparison is made with similar situations on Earth. It is estimated that sensible heat flux contribution to the dissipation of the original thermal structure of the cold air could be three times larger than the corresponding situation on Earth. Illustrative numerical model simulations provide scaling of the potential impact on the dissipation of cold air masses for various combinations of background wind speed and latitudes.
    Keywords: Lunar and Planetary Exploration
    Type: Journal of the Atmospheric Sciences; 54; 1544-1549
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...