ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
  • 1990-1994  (1)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Zoomorphology 110 (1990), S. 105-114 
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mouthparts of Lepidoptera were investigated in a number of species by morphological and cinematographical methods. Both the galeae (which compose the proboscis) and the basal maxillary components (stipites) were studied in the resting position, in motion, and during feeding. In the resting position the proboscis is coiled so tightly that the surfaces of the consecutive coils are in close contact and the outermost coil touches the ventral side of the head. Cuticular processes of the galeal wall interlock between the coils in this position. In the investigated species they occur on the galeal wall and on the ventral side of the head in varying number and distribution. By the extension of the basal galeal joint, the coiled proboscis is released from its resting position and is elevated continuously. It uncoils in 3–5 steps which effect the entire length simultaneously. Each uncoiling step occurs synchronously with a compression of the stipital tubes on either side of the body. These compression movements pump hemolymph into the galeae. In all investigated Lepidoptera the uncoiled proboscis shows a distinct downward bend at a certain point which is also detectable in anaesthetized or freshly killed animals in some species. This feeding position and the movements of the uncoiled proboscis are similar in all species despite the intrinsic galeal muscles being variously arranged in the galeal lumen in different Lepidoptera. When comparing cross-sections through corresponding regions of coiled and uncoiled proboscises, the curvatures of the dorsal galeal walls remain unchanged. Coiling of the proboscis starts at the tip and progresses to the base. After coiling the proboscis tightly beneath the head, the diameter of the spiral widens due to its elastic properties until the proboscis props itself against the ventral side of the head. This elastic effect combined with the interlocking cuticular processes seems to be responsible for the resting position of the proboscis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Morphology and distribution of the proboscis sensilla in Vanessa cardui have been investigated in order to contribute to the understanding of flower-probing behaviour in butterflies. The proboscis has a bend region approximately one-third of the length from the base. A short tip region is characterized by rows of intake slits leading into the food canal. Along the dorsal, lateral and ventral sides of the proboscis, sensilla trichodea, sensilla basiconica and sensilla styloconica are distributed in varying patterns depending on their distance from the b ase. The medial food canal bears one longitudinal row of sensilla basiconica only. The bristle-shaped sensilla trichodea are longer in the proximal region of the proboscis and become gradually shorter towards the tip. They are most frequent in number near to the bend region and near the beginning of the tip region. Sensilla basiconica arranged in longitudinal rows increase in number the more distal they are on the proboscis. The tip region is characterized by rows of sensilla styloconica on the dorsal side whereas the sensilla trichodea are mostly restricted to the ventral side. The ultrastructure suggests that the aporous sensilla trichodea function as mechanosensilla while the uniporous sensilla basiconica act as contact chemosensilla. The sensilla styloconica are regarded as bimodal contact chemo/mechanosensilla since their sensory cones are equipped with a single terminal pore and a tubular body at the base. The mouthpart sensilla appear to provide tactile cues on the positioning of the proboscis and on the degree of its insertion into a floral tube. Furthermore, they receive chemical stimuli on the availability of nectar and on the immersion status of the food canal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...