ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (70)
  • American Institute of Physics (AIP)  (50)
  • Oxford University Press  (48)
  • American Chemical Society (ACS)
  • 1995-1999  (66)
  • 1990-1994  (91)
  • 1955-1959  (10)
  • 1925-1929  (1)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 2926-2938 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments are described in which a high-purity, high-power (0.15 TW, 1 MeV) proton beam is generated from an ion source consisting of H2 gas frozen onto a liquid-helium-cooled copper anode at 4.2 K in a series-field-coil extraction diode on the 0.7 TW HydraMITE-II accelerator. Peak anode proton current densities of 2 kA/cm2 were measured. This current density is a factor of 100 higher than those obtained in previous liquid-helium-cooled cryogenic diode experiments on small accelerators and is in the range required for high-power ion beam applications. Thomson parabola, Faraday cup, and carbon activation measurements indicate an ion beam proton fraction close to 100% for the cryogenic source, compared to 50–70% for the standard hydrocarbon anode tested. The cryogenic proton source is believed to consist of no more than a few monolayers of molecular hydrogen. The hydrogen-coated cryogenic anode shows a faster initial anode turn-on than other materials. However, source-limited emission from the thin hydrogen layer results in a somewhat longer current risetime, reduced ion diode efficiency, lower proton current enhancement over the Child–Langmuir limit, and a proton spectrum of lower average energy than for the hydrocarbon anode. Techniques to overcome these limitations are discussed. Cryogenic ion sources consisting of frozen N2, CH4, and Ne have also been studied. In each case, high intensity beams consisting predominantly of components of the refrigerated gas were produced.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 67 (1990), S. 5761-5761 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Since the discovery of the high-Tc superconductors, there is a great interest in the magnetic properties of copper oxides due to the possibility of a magnetic origin of the pairing mechanism. With this perspective, we decide to reinvestigate the structure and the magnetic properties of Bi2CuO4, a compound we use successfully as precursor of the Bi-Sr-Ca-Cu high-Tc superconductors. A neutron powder diffraction experiment allowed us to resolve the ambiguity in the structure, and revealed the existence of a magnetic phase transition to a 3D antiferromagnetic ordered state below 50 K. The nuclear structure can be described as formed by stacks of CuO4 units in the c-axis direction, linked in the stacks and with units in other stacks by BiO2 chains, so each stack is connected with four stacks. The space group was confirmed to be P4/ncc. The magnetic space group is P4/n'cc. There is a ferromagnetic ordering of the magnetic moments on Cu atoms along the stacks, and an antiferromagnetic ordering between the stacks. We present an interpretation of the magnetic properties of this compound, at the light of our previous results, and a discussion of a calorimetric experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 4917-4928 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Accurate modeling of load behavior in Z-pinch plasma radiation sources driven by high-current generators requires the measurement of fast-rise-time multimegampere currents close to the load. Conventional current diagnostics mounted in inductive cavities (such as B-dot loops and Rogowski coils) fail at small radius because of electrical breakdown produced by high dI/dt. In this paper, we describe the use of large-signal, nanosecond-time-resolution lithium niobate piezoelectric stress gauges to directly measure the magnetic pressure B2/2μ0=μ0I2/8π2r2 generated at radius r by a current I flowing in a radial transmission line. Current measurements have been performed at radius r=2.54×10−2 m on Sandia National Laboratories' Proto-II (10 TW) and SATURN (30 TW) gas puff Z-pinch experiments with maximum currents of 10.1 MA and dI/dt to 2.1×1014 A/s. Comparisons with Faraday rotation and B-dot current diagnostic measurements at large radius are presented. Bremsstrahlung noise problems unique to the SATURN gas puff source are discussed. For a Y-cut lithium niobate stress gauge on a pure tungsten electrode, current densities up to I/2πr=78 MA/m can be measured before the electrode yield strength and the piezoelectric operating stress limit are exceeded. Above the Hugoniot elastic limit of the electrode material, the dynamic range and accuracy of the diagnostic are greatly reduced, but it appears that the technique can be extended to higher current densities using an X-cut quartz piezoelectric element and a tungsten-sapphire electrode impedance stack.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments to explore the long-time evolution of noninductive, high βp plasmas in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159], have identified a new, quiescent, high performance regime. The experiments were carried out at low current (400–800 kA) with medium power neutral beam injection (3–10 MW). This regime is characterized by high q0 ((approximately-greater-than)2) and moderate li(∼1.3). It is reached by slow relaxation of the current profile, on the resistive time scale. As the profiles relax, q0 rises and li falls. When q0 goes above 2 (approximately), magnetohydrodynamic (MHD) activity disappears, and the stored energy rises. Most dramatic is the strong peaking of the central density, which increases by as much as a factor of 2. The improved central confinement appears similar to the PEP/reversed central shear/second stable core modes seen in tokamak experiments, but in this case without external intervention or transient excitation. At high current, a similar, but slower relaxation is seen. Also notable in connection with these discharges is the behavior of the edge and scrape-off layer (SOL). The edge localized modes (ELM's) as seen previously, are small and very rapid (to 1 kHz). The SOL exhibits high density (≥1×1019 m−3), which shows little or no falloff with radius. Also the power deposition at the divertor surface is very broad, up to four times the width usually seen. This regime is of particular interest for the development of steady-state tokamak operating scenarios, for the Tokamak Physics Experiment (TPX), and following reactors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 237-245 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Simulations of decaying compressible turbulent flows have been performed using the PPM algorithm on grids of 5123 and 10243 computational cells. Although the run on the finer grid has not yet been carried out to a time large enough for the spectra to relax fully, it adds significantly to the results on the coarser grid by lengthening the range of wave numbers in which the flow exhibits a self-similar character. There is an inertial range of scales in the decaying flow on the finer mesh that is free from direct effects of dissipation, forcing, boundary conditions, or initial conditions. Favre averaging of the high resolution data is performed on different scales from which the vorticity structures in the inertial range may be visualized and characterized without confusion from the smaller-scale features of the near dissipation range. We find that the vorticity structures of the inertial range are filamentary as well, but qualitatively different—shorter and more curved—than those of the dissipation range. Quantitative evidence of the action of vortex stretching in developed turbulence is also presented. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 1410-1422 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Characterization of the plasma density and temperature at the last closed flux surface (the separatrix) of a tokamak requires accurate knowledge of the location of the separatrix. In this paper we discuss the effect of inaccuracy in the separatrix location on the measured parameters in DIII-D [Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), p. 159] An uncertainty in the separatrix position of ±0.5 cm, as expected in this device using magnetic reconstruction to determine the location of the separatrix, leads to unacceptably large uncertainty in the plasma parameters. Several techniques to improve the accuracy obtained from magnetic reconstruction are discussed. A new technique that is based on a characterization of the electron temperature profile is proposed. A comparison of the separatrix location defined in this manner with that obtained using magnetic reconstruction techniques suggests a systematic error in the reconstruction when the plasma is far from the walls and magnetic diagnostics. Determination of the perpendicular transport coefficients is given as an example of the improved statistics obtained using the new technique of defining the separatrix position.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The radiation of divertor heat flux on DIII-D [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low-Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction-dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE [T. Rognlien, J. L. Milovich, M. E. Rensink, and G. D. Porter, J. Nucl. Mater. 196–198, 347 (1992)] has reproduced many of the observed experimental features. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 4311-4320 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The importance of radial particle flow on the power flowing across the last closed flux surface (separatrix) in DIII-D [Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), Vol. I, p. 159] is considered. The perpendicular thermal diffusivity at the separatrix is near 1 m2/s in low confinement operation (L-mode), and 0.1 m2/s in high confinement (H-mode). The particle diffusivity is about one-fourth of the thermal diffusivity producing radial particle fluxes of the order of kilo-amperes. The particle flux is 10 to 100 times the particle input from neutral beam sources, consistent with core fueling being dominated by neutral recycling. The radial particle flux scales with the neutral pressure in the private flux region, suggesting the core is fueled predominantly from neutrals which recycle from the divertor, through the private flux, and into the core near the singular point where the poloidal field is zero (X-point). There is significant core power loss associated with the large particle flux across the separatrix. The electron temperature measured at the top of the edge pedestal in H-mode operation scales inversely with the particle flux. In turn, the core energy confinement scales with the pedestal temperature, and hence inversely with the particle flux. The results presented here indicate the global particle confinement time is between 0.5 and 2 times the global energy confinement time. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 32 (1991), S. 259-265 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: A correspondence between (not necessarily self-dual nor anti-self-dual) Yang–Mills fields on Minkowski space, and pairs of cohomology classes γ, φ, on null twistor space PN(large-closed-square) is established; γ∈H1CR (PN(large-closed-square),@sg) defines a deformed Cauchy–Riemman (C–R)(γ) structure on a principal bundle over PN, and φ∈H1CR(γ) (PN(large-closed-square),O(−4)⊗@sg). The correspondence depends on the choice of a spacelike hyperplane in Minkowski space. Here, γ and φ provide initial values in the spin bundle over this hyperplane for a system of evolution equations, along the null geodesic spray congruence in the spin bundle over Minkowski space.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A two-dimensional calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses classical processes of parallel transport along the magnetic field and cross-field drifts together with anomalous radial diffusion, including perpendicular ion viscosity. The self-consistent electrostatic potential is calculated on both sides of the magnetic separatrix via quasineutrality and current continuity. Outside the separatrix, the model extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms—from anomalous viscosity, collisional damping, inertia, and ∇B drifts—contribute to determining the potential. The model rigorously enforces cancellation of gyroviscous and magnetization terms from the transport equations. The results emphasize the importance of E×B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field profiles at the outer midplane show strong variation with the magnitude of the anomalous diffusion coefficients and the core toroidal rotation velocity, indicating that shear stabilization of edge turbulence can likewise be sensitive to these parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...