ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Neural networks  (2)
  • Springer  (2)
  • 1995-1999  (2)
  • 1990-1994
  • 1965-1969
Collection
Publisher
  • Springer  (2)
Years
  • 1995-1999  (2)
  • 1990-1994
  • 1965-1969
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The international journal of advanced manufacturing technology 14 (1998), S. 412-422 
    ISSN: 1433-3015
    Keywords: Fourier transform ; Machine vision ; Neural networks ; Surface roughness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this study we use machine vision to assess surface roughness of machined parts produced by the shaping and milling processes. Machine vision allows for the assessment of surface roughness without touching or scratching the surface, and provides the flexibility for inspecting parts without fixing them in a precise position. The quantitative measures of surface roughness are extracted in the spatial frequency domain using a two-dimensional Fourier transform. Two artificial neural networks, which take roughness features as the input, are developed to determine the surface roughness. The first network is for test parts placed in a fixed orientation, which minimises the deviation of roughness measures. The second network is for test parts placed in random orientations, which gives maximum flexibility for inspection tasks. Experimental results have shown that the proposed roughness features and neural networks are efficient and effective for automated classification of surface roughness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The international journal of advanced manufacturing technology 13 (1997), S. 56-66 
    ISSN: 1433-3015
    Keywords: Angular measurement ; Dimensional measurement ; Least squares ; Machine vision ; Neural networks
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this study a machine vision approach is developed for dimensional and angular measurements of manufactured components comprising straight line segments. We aim at the measurements of distance between two parallel lines and angle between two intersecting lines using both least mean square (LMS) and artificial neural network (ANN) techniques. LMS models estimate the line parameters based on the sum of squared perpendicular distances, rather than the vertical distances, between the observed data points and the line. A set of 23 gauge blocks of varying sizes is used to evaluate the performance of the LMS line estimators. Experimental results show that the measurement errors of the LMS models are affected by the line length and orientation of digital images. ANN techniques are, therefore, used to adjust the measurement errors resulting from the LMS models. Two back-propagation neural networks are developed, one for measuring the distance between two parallel lines, and the other for measuring the angle between two intersecting lines. Experimental results show that the ANNs are very effective for correcting the measurement errors regardless of line lengths and orientations of digital images. A 90% improvement in measurement accuracy for the ANN compared to the LMS was achieved. By using the ANNs, the measurement accuracy and flexibility in manufacturing applications can be significantly improved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...