ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Engineering General  (12)
  • 1995-1999  (6)
  • 1990-1994  (6)
  • 1970-1974
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 34 (1992), S. 823-836 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A domain-adaptive technique and an iterative, block bidiagonal method are used to analyse the unsteady dynamics of annular liquid membranes subject to fluctuations in the mass injected into the volume enclosed by the membranes. The domain-adaptive technique maps the unknown, time-dependent, curvilinear geometry of the liquid membrane into a unit interval. The condition that the membrane's radius is zero at the convergence point is used to determine the convergence length, which is governed by an ordinary differential equation. This equation is solved iteratively together with those which govern the fluid dynamics equations. A block bidiagonal technique is used to determine the mass per unit length, radius, and axial and radial velocity components of the membrane. It is shown that the pressure of the gases enclosed by the liquid membrane responds instantaneously to changes in and exhibits the same periodic behaviour as the mass injection rate. The convergence length takes a delay time to respond to the mass injection rate fluctuations. The magnitude of this delay time increases as the Froude and Weber numbers and the nozzle exit angle are increased. The amplitude of the oscillations of both the convergence length and the pressure coefficient increases as the pressure difference across the membrane and the amplitude of the mass injection rate fluctuations are increased.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 881-894 
    ISSN: 0271-2091
    Keywords: Liquid membranes ; Adaptive finite difference methods ; Integrodifferential equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Two domain-adaptive finite difference methods are presented and applied to study the dynamic response of incompressible, inviscid, axisymmetric liquid membranes subject to imposed sinusoidal pressure oscillations. Both finite difference methods map the time-dependent physical domain whose downstream boundary is unknown onto a fixed computational domain. The location of the unknown time-dependent downstream boundary of the physical domain is determined from the continuity equation and results in an integrodifferential equation which is non-linearly coupled with the partial differential equations which govern the conservation of mass and linear momentum and the radius of the liquid membrane. One of the finite difference methods solves the non-conservative form of the governing equations by means of a block implicit iterative method. This method possesses the property that the Jacobian matrix of the convection fluxes has an eigenvalue of algebraic multiplicity equal to four and of geometric multiplicity equal to one. The second finite difference procedure also uses a block implicit iterative method, but the governing equations are written in conservation law form and contain an axial velocity which is the difference between the physical axial velocity and the grid speed. It is shown that these methods yield almost identical results and are more accurate than the non-adaptive techniques presented in Part I. It is also shown that the actual value of the pressure coefficient determined from linear analyses can be exceeded without affecting the stability and convergence of liquid membranes if the liquid membranes are subjected to sinusoidal pressure variations of sufficiently high frequencies.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 1293-1314 
    ISSN: 0271-2091
    Keywords: chemical reactors ; annular liquid jets ; grid generation ; mass absorption ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical study of Hopf bifuractions in annular liquid jets with mass transfer is presented. The study is based on the asymptotic equations which govern the dynamics of inviscid, incompressible, thin, annular liquid jets and on equilibrium conditions for mass transfer at the jet's inner and outer interfaces. It is shown that the amplitude of the time-periodic motion that results from the Hopf bifurcation increases whereas its frequency decreases as the solubility ratio is increased.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 961-978 
    ISSN: 0271-2091
    Keywords: planar liquid sheets ; perturbation methods ; film casting ; film coating ; plane stagnation flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Asymptotic methods are employed to derive the leading-order equations which govern the fluid dynamics of time-dependent, incompressible, planar liquid sheets at low Reynolds numbers using as small parameter the slenderness ratio. Analytical and numerical solutions of relevance to both steady film casting processes and plane stagnation flows are obtained with the leading-order equations. It is shown that for steady film casting processes the model which accounts for both gravity and low-Reynolds-number effects predicts thicker and slower planar liquid sheets than those which neglect a surface curvature term or assume that Reynolds number is zero, because the neglect of the curvature term and the assumption of zero Reynolds number are not justified at high take-up velocities owing to the large velocity gradients that occur at the take-up point. It is also shown that for Reynolds number/Froude number ratios larger than one, models which neglect the surface curvature or assume a zero Reynolds number predict velocity profiles which are either concave or exhibit an inflection point, whereas the model which accounts for both curvature and low-Reynolds-number effects predicts convex velocity profiles. For plane stagnation flows it is shown that models which account for both low-Reynolds-number and curvature effects predict nearly identical results to those of models which assume zero Reynolds number. These two models also predict a faster thickening of the planar liquid sheet than models which account for low- Reynolds-number effects but neglect the surface curvature. This curvature term is very large near the stagnation point and cannot be neglected there. It is also shown that the thickening of the sheet occurs closer to the stagnation point as the Reynolds number/Froude number ratio is increased, i.e. as the magnitude of the gravitational acceleration is increased. In addition it is shown that large surface tension introduces a third-order spatial derivative in the axial momentum equation at leading order.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 1089-1102 
    ISSN: 0271-2091
    Keywords: piecewise-linearized methods ; two-point boundary value problems ; singular perturbations ; finite differences ; finite elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Piecewise-linearized methods for the solution of two-point boundary value problems in ordinary differential equations are presented. These problems are approximated by piecewise linear ones which have analytical solutions and reduced to finding the slope of the solution at the left boundary so that the boundary conditions at the right end of the interval are satisfied. This results in a rather complex system of non-linear algebraic equations which may be reduced to a single non-linear equation whose unknown is the slope of the solution at the left boundary of the interval and whose solution may be obtained by means of the Newton-Raphson method. This is equivalent to solving the boundary value problem as an initial value one using the piecewise-linearized technique and a shooting method. It is shown that for problems characterized by a linear operator a technique based on the superposition principle and the piecewise-linearized method may be employed. For these problems the accuracy of piecewise-linearized methods is of second order. It is also shown that for linear problems the accuracy of the piecewise-linearized method is superior to that of fourth-order-accurate techniques. For the linear singular perturbation problems considered in this paper the accuracy of global piecewise linearizat ion is higher than that of finite difference and finite element methods. For non-linear problems the accuracy of piecewise-linearized methods is in most cases lower than that of fourth-order methods but comparable with that of second-order techniques owing to the linearization of the non-linear terms.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 893-906 
    ISSN: 0271-2091
    Keywords: Adaptive ; Characteristic ; Flux-corrected Transport ; Petrov-Galerkin ; Finite Elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Three adaptive finite element methods based on equidistribution, elliptic grid generation and hybrid techniques are used to study a system of reaction-diffusion equations. It is shown that these techniques must employ sub-equidistributing meshes in order to avoid ill-conditioned matrices and ensure the convergence of the Newton method. It is also shown that elliptic grid generation methods require much longer computer times than hybrid and static rezoning procedures. The paper also includes characteristic, Petrov-Galerkin and flux-corrected transport algorithms which are used to study a linear convection-reaction-diffusion equation that has an analytical solution. The flux-corrected transport technique yields monotonic solutions in good agreement with the analytical solution, whereas the Petrov-Galerkin method with quadratic upstream-weighted functions results in very diffused temperature profiles. The characteristic finite element method which uses a Lagrangian-Eulerian formulation overpredicts the flame front location and exhibits overshoots and undershoots near the temperature discontinuity. These overshoots and undershoots are due to the interpolation of the results of the Lagrangian operator onto the fixed Eulerian grid used to solve the reaction-diffusion operator, and indicate that characteristic finite element methods are not able to eliminate numerical diffusion entirely.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 253-278 
    ISSN: 0271-2091
    Keywords: volcanic conduits ; homogeneous flow ; exsolution ; total-variation-diminishing techniques ; method of characteristics ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A one-dimensional, time-dependent, isothermal, homogeneous, two-phase flow model was developed to study magma ascent in volcanic conduits. The physical modeling equations were numerically solved by means of a TVD (total variation diminishing) predictor-corrector procedure and by means of a predictor-corrector technique based on the method of characteristics. The results from the transient model were verified with an analytical solution for wave propagation in conduits without friction and gravitational effects. The numerical solutions were also compared with those of a steady-state, homogeneous, two-phase model for basaltic and rhyolitic magma ascents in the fissures and circular conduits of Vesuvius and Mt St. Helens. An application of the model to magma decompression in conduits indicates very short times for gas exsolution, fragmentation, and shock wave propagation, implying that the modelling of gas exsolution should involve non-equilibrium kinetics effects. Future coupling of the transient magma ascent model with magma chamber and pyroclastic dispersion models should allow for more realistic simulations of the time-dependent behavior of real volcanic eruptions.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 697-723 
    ISSN: 0271-2091
    Keywords: Methods of lines ; Combustion ; Reaction-diffusion equations ; Hermitian-operator methods ; Adaptive methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Adaptive and non-adaptive finite difference methods are used to study one-dimensional reaction-diffusion equations whose solutions are characterized by the presence of steep, fast-moving flame fronts. Three non-adaptive techniques based on the methods of lines are described. The first technique uses a finite volume method and yields a system of non-linear, first-order, ordinary differential equations in time. The second technique uses time linearization, discretizes the time derivatives and yields a linear, second-order, ordinary differential equation in space, which is solved by means of three-point, fourth-order accurate, compact differences. The third technique takes advantage of the disparity in the time scales of the reaction and diffusion processes, splits the reaction--diffusion operator into a sequence of reaction and diffusion operators and solves the diffusion operator by means of either a finite volume method or a three-point, fourth-order accurate compact difference expression. The non-adaptive methods of lines presented in this paper may use equaliy or non-equally spaced fixed grids and require a large number of grid points to solve accurately one-dimensional problems characterized by the presence of steep, fast-moving fronts. Three adaptive methods for the solution of reaction-diffusion equations are considered. The first adaptive technique is static and uses a subequidistribution principle to determine the grid points, avoid mesh tangling and node overtaking and obtain smooth grids. The second adaptive technique is dynamic, uses an equidistribution principle with spatial and temporal smoothing and yields a system of first-order, non-linear, ordinary differential equations for the grid point motion. The third adaptive technique is hybrid, combines some features of static and dynamic methods, and uses a predictor-corrector strategy to predict the grid and solve for the dependent variables, respectively. The three adaptive techniques presented in this paper use physical co-ordinates and may employ finite volume or three-point, compact methods. The adaptive and non-adaptive finite difference methods presented in the paper are used to study a decomposition chemical reaction characterized by a scalar, one-dimensional reaction-diffusion equation, the propagation of a one-dimensional, confined, laminar flame in Cartesian co-ordinates and the Dwyer-Sanders model of one-dimensional flame propagation. It is shown that the adaptive moving method presented in this paper requires a smaller number of grid points than adaptive static, adaptive hybrid and non-adaptive methods. The adaptive hybrid method requires a smaller time step than adaptive static techniques, due to the lag between the grid prediction and the solution of the dependent variables. Non-adaptive methods of lines may yield temperature oscillations in front of and behind the flame front if Crank-Nicolson techniques are used to evaluate the time derivatives. Fourth-order accurate methods of lines in space yield larger temperature oscillations than second-order accurate methods of lines, and the magnitude of these oscillations decreases as the time step is decreased. It is also shown that three-point, fourth-order accurate discretizations of the spatial derivatives require the same number of grid points as second-order accurate, finite volume methods, in order to resolve accurately the structure of steep, fast-moving flame fronts.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 859-879 
    ISSN: 0271-2091
    Keywords: Liquid membranes ; Lagrangian-Eulerian finite difference methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A non-adaptive method and a Lagrangian-Eulerian finite difference technique are used to analyse the dynamic response of liquid membrancs to imposed pressure variations. The non-adaptive method employs a fixed grid and upwind differences for the convection terms, whereas the Lagrangian-Eulerian technique uses operator splitting and decomposes the mixed convection-diffusion system of equations into a sequence of convection and diffusion operators. The convection operator is solved exactly by means of the method of characteristics, and its results are interpolated onto the fixed (Eulerian) grid used to solve the diffusion operator. It is shown that although the method of characteristics eliminates the numerical diffusion associated with upwinding the convection terms in a fixed Eulerian grid, the Lagrangian-Eulerian method may yield overshoots and undershoots near steep flow gradients or when rapid pressure gradients are imposed, owing to the interpolation of the results of the convection operator onto the fixed grid used to solve the diffusion operator. This interpolation should be monotonic and positivity-preserving and should satisfy conservation of mass and linear momentum. It is also shown that both the non-adaptive and Lagrangian-Eulerian finite difference methods produce almost identical (within 1%) results when liquid membranes are subjected to positive and negative step and ramp changes in the pressure coefficient. However, because of their non-adaptive character, these techniques require an estimate of the (unknown) length of the membrane and do not use all the grid points in the calculations. The liquid membrane dynamic response is also analysed as a function of the Froude number, convergence parameter and nozzle exit angle for positive and negative step and ramp changes in the pressure coefficient.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 735-761 
    ISSN: 0271-2091
    Keywords: perturbation methods ; adaptive finite differences ; annular liquid jets ; one-dimensional models ; gravity modulation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Perturbation methods are used to obtain the one-dimensional, asymptotic equations that govern the fluid dynamics of slender, thin, inviscid, incompressible, axisymmetric, irrotational, annular liquid jets from the Euler equations. It is shown that, depending on the magnitude of the Weber number, two flow regimes are possible: an inertia-dominated one corresponding to large Weber numbers, and a capillary regime for Weber numbers of the order of unity. The steady equations governing these two regimes have analytical solutions for the liquid's axial velocity component and require a numerical integration to determine the jet's mean radius for inertia-dominated jets. The one-dimensional equations derived in this paper are shown to be particular cases of a hydraulic model for annular liquid jets, and this model is used to determine the effects of gravity modulation on the unsteady fluid dynamics of annular liquid jets in the absence of mass injection into the volume enclosed by the jet and mass absorption. It is shown that both the convergence length and the pressure coefficient are periodic functions of time which have the same period as that of the gravity modulation, but undergo large variations as the amplitude, frequency and width of gravitational pulses is varied.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...