ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 88 (1984), S. 2880-2883 
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 5166-5166 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 7095-7109 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: Rotational transitions between J≤3 levels within the K=0 manifold have been observed for H2O–CO, HDO–CO, D2O–CO, H2O–13CO, HDO–13CO, and H217O–CO using the molecular beam electric resonance and Fourier transform microwave absorption techniques. ΔMJ=0→1 transitions within the J=1 level were also measured at high electric fields. A tunneling motion which exchanges the equivalent hydrogens gives rise to two states in the H2O and D2O complexes. The spectroscopic parameters for H2O–CO in the spatially symmetric tunneling state are [∼(B0) =2749.130(2)MHz, D0=20.9(2)kHz, and μa=1.055 32(2)D] and in the spatially antisymmetric state are [∼(B0) =2750.508(1)MHz, D0=20.5(1)kHz, and μa=1.033 07(1)D]. Hyperfine structure is resolved for all isotopes. The equilibrium structure of the complex has the heavy atoms approximately collinear. The water is hydrogen bonded to the carbon of CO; however the bond is nonlinear. At equilibrium, the O–H bond of water makes an angle of 11.5° with the a axis of the complex; the C2v axis of water is 64° from the a axis of the complex. The hydrogen bond length is about 2.41 A(ring). The barrier to exchange of the bound and free hydrogens is determined as 210(20) cm−1 (600 cal/mol) from the dipole moment differences between the symmetric and antisymmetric states. The tunneling proceeds through a saddle point, with C2v structure, with the hydrogen directed towards the CO subunit. The equilibrium tilt away from a linear hydrogen bond is in the direction opposite to the tunneling path.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 106-117 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The structure of the gas-phase trimeric complex H2O–H2O–CO2 is determined through an analysis of the rotational spectra of ten isotopically substituted species. These spectra were measured in the region between 7.5 and 18 GHz using a pulsed-molecular-beam Fourier-transform microwave spectrometer. The nondeuterated species display two sets of transitions separated by ∼1 MHz. The splittings of the perdeuterated form are smaller and three partially deuterated forms have no splittings. The rotational constants for the lower frequency set of transitions of the normal species are A=6163.571(4) MHz, B=2226.157(2) MHz, C=1638.972(1) MHz, δJ=0.000 83(3) MHz, ΔJ=0.002 98(4) MHz, ΔJK=−0.0005(2) MHz. The differences in the rotational constants between the upper and lower states are ΔA=498 kHz, ΔB=520 kHz, and ΔC=−133 kHz. The dipole moments are μa=1.571(5) D and μb=0.761(4) D with μc=0 D. The dipole moments and the intertial defect of −0.620 uA(ring)2 both indicate an essentially planar complex. The structure is found to be cyclical with the dimer-type bond lengths within the trimer being approximately the same as those found in the free heterodimers. One water molecule is oxygen bound to the carbon atom of the CO2 and is also hydrogen bonded to the oxygen of the second water molecule. The second water molecule is in turn hydrogen bonded to one of the oxygens of the CO2 molecule. The observed splittings are most likely due to a hydrogen-exchanging internal rotation of this second water molecule.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 2861-2868 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The rotational spectra of H2O–N2O, D2O–N2O, and HDO–N2O have been observed using molecular beam electric resonance techniques at both zero and nonzero electric fields. H2O–N2O is nonrigid with respect to internal rotation of the water subunit. Rotational constants in MHz for the spatially antisymmetric tunneling state are A=12 605.001(77), B=4437.978(32), and C=3264.302(32). Rotational constants for the spatially symmetric tunneling state are A=12 622.595(203), B=4437.422(47), C=3264.962(47). These together with the rotational constants of the other isotopomers are consistent with a planar, T-shaped arrangement of the heavy atoms of the complex, with the distance between the centers of mass of the two subunits, Rc.m., equal to 2.91(2) A(ring) or a distance of 2.97(2) A(ring) from the H2O oxygen to the central nitrogen of N2O. The measured dipole moments of the two tunneling isomers are identical; μa = 1.480(2) and μb = 0.31(2) D. The values of these dipole moment components indicate an in-plane equilibrium tilt of about 20° between the C2v axis of water and the N–O weak bond. This tilt suggests a second interaction may exist between a hydrogen on water and the N2O subunit. The rotational constants suggest that the N2O unit is tilted by about 9° from perpendicular to the N–O weak bond. The barrier for the tunneling interchange of the water protons is estimated to be 235(10) cm−1. Quadrupole coupling constants eqQaa for the outer and inner nitrogen of N2O are 0.371(130) and 0.128(45) MHz, respectively. Electrostatic models applied to water–N2O and water–CO2 predict hydrogen bonded structures rather than the experimentally observed Lewis base structures.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 7807-7816 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The rotational spectra of CO–CO–H2O, CO–CO–HDO, 13CO–CO–H2O, and 13CO–13CO–H2O have been measured using a pulsed-molecular-beam Fabry–Perot Fourier-transform microwave spectrometer. The complex exhibits internal motion involving an exchange of the CO subunits as well as an hydrogen exchange. In the normal species this is indicated in the spectrum by transition doublets separated by a few hundred kHz and an effective shift of alternating transitions which prevents a good semirigid rotor fit. The other isotopically substituted complexes have spectra in which the transitions are either singlet, doublet or quartets depending on the appropriate spin weights or because of dampening of the internal motion. All the spectra are mutually consistent with a tunneling path with four isoenergetic states. By treating the tunneling frequency of the CO interchange as a vibrational frequency, the rotational constants of two internal rotor states and a tunneling frequency could be determined. The tunneling frequency in CO–CO–H2O is 372 kHz and the ground state rotational constants are A=4294.683(70) MHz, B=1685.399(35) MHz, C=1205.532(35) MHz. The tunneling frequency corresponding to the hydrogen exchange is not determined but the observed transition splittings are comparable to those found for other van der Waals complexes containing a water subunit. The dipole moments determined for CO–CO–HDO are μa=4.790(87)×10−30 C m [1.436(26) D], μb=1.79(12)×10−30 C m [0.533(35) D], and μc=1.10(37)×10−30 C m [0.33(11) D]. The general structure of the complex is found to be cyclic. The CO–CO configuration is approximately T-shaped with the carbon atom of one subunit directed toward the molecular axis of the other subunit. The H2O subunit has a hydrogen atom directed toward the CO subunits but not in the expected linear hydrogen bonded configuration. The uncertainties given in parentheses are one standard deviation. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 27 (1993), S. 7-7 
    ISSN: 0066-4197
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Biologie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    [s.l.] : Nature Publishing Group
    Nature 285 (1980), S. 392-393 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] Arnold et al.2 reported unusual ion masses at altitudes between 37 and 56km based on rocket-borne mass spectrometric techniques. These ions, NPH (non-proton hydrates), are listed in Table 1. The original suggestion by Arnold et al2 that these might be protonated formaldehyde has been discounted3. ...
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1432-1939
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Intact cores from the wet coastal arctic tundra at Barrow, Alaska, were used as microcosms in the measurement of CO2 fluxes between peat, vegetation, and atmosphere under controlled conditions. Net ecosystem CO2 uptake was almost twice as high at present summer temperatures (4° C) than at 8°. Lowering the water table from the soil surface to -5 cm also had a pronounced effect in decreasing net ecosystem carbon storage. Warming of the tundra climate could change this ecosystem from a sink for atmospheric CO2 to a source.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Springer
    Oecologia 58 (1983), S. 188-193 
    ISSN: 1432-1939
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Festuca elatior L., C3, and Sorghum halepense (L.) Persoon, C4, were grown in mixed and unmixed cultures under 350 and 600 ppm CO2 for 112 days. High CO2 levels stimulated increases of total dry weight and leaf surface area in Festuca despite unfavorably high temperatures. In Sorghum, delay of leaf senescence and of floral initiation was attributed to high CO2 concentrations. Growth of unmixed cultures of Sorghum under 600 ppm CO2 was relatively poor because of an apparent interaction of high CO2 with self-shading. All instances of culturexCO2 interactions are offered in supported of the hypothesis that elevated CO2 levels will effect the competitive interaction of C3 and C4 species. Peak net assimilation rates of C3 and C4 plants were seasonally separated at 350 ppm CO2 but coincided at 600 ppm. Based on our observations of Festuca and Sorghum, we project that global CO2 enrichment may alter competitive balance between C3 and C4 plants and subsequently affect seasonal niche separation, species distribution patterns, and net primary production within mixed communities.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...