ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Evaporation  (2)
  • Heterosis  (2)
  • Nicotiana (photosynthesis)  (2)
  • Nitrogen nutrition  (2)
  • 1995-1999  (1)
  • 1990-1994  (5)
  • 1985-1989  (2)
Collection
Keywords
Publisher
Years
  • 1995-1999  (1)
  • 1990-1994  (5)
  • 1985-1989  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Trees 1 (1987), S. 219-224 
    ISSN: 1432-2285
    Keywords: Larix ; Heterosis ; Photosynthesis ; Stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Individual 33-year-old forest trees of the deciduous conifer speciesLarix decidua, Larix leptolepis andLarix decidua x leptolepis were investigated with respect to the phenomenon of stem heterosis in hybrid larch; the first part of this study compares the gas exchange responses of leaves. CO2 assimilation per leaf area was similar in the three larch species, but on a dry weight basis the nitrogen content of the needles and maximum CO2 assimilation rate (Amax) were slightly higher in the hybrid. This increase was accompanied by a higher protein content than in the Japanese and a lower specific leaf weight than in the European larch. All three species were similar in terms of the photosynthetic “nitrogen use” and stomatal conductance atA max. The similar slopes of the area-related steady-state responses of gas exchange against irradiance, evaporative demand and internal CO2 concentration led to similar rates of CO2 uptake under ambient conditions. The natural combinations and variability of the environmental factors also reduced the small dry weight-related difference inA max between hybrid larch and the parent species, such that all trees achieved similar daily carbon gains. Thus, the ecological significance of small interspecific differences in the metabolism of leaves has very little effect under the natural habitat conditions of a temperate climate. The second part of the study will investigate the effect of growth characteristics on the heterosis of hybrid larch.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Trees 1 (1987), S. 225-231 
    ISSN: 1432-2285
    Keywords: Larix ; Heterosis ; Growth ; Branching pattern ; Needle density
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Among 33-year-old forest trees ofLarix decidua, L. leptolepis andL. decidua x leptolepis, the hybrid possessed an above-ground biomass which was three times greater, although all larches displayed similar relative distributions of biomass. At a “relative growth rate” slightly lower than in the parent species, hybrid larch achieved twice the annual carbon gain, increment in stem length and above-ground production, and its foliage-related stem growth was higher than in European (L. decidua) but similar to Japanese (L. leptolepis) larch. A similar “relative growth efficiency” and foliage-related total above-ground production in all trees did reflect the similarity of photosynthetic capacity of the hybrid found at the leaf level. While the lengths of lateral twigs on hybrid branches were intermediate between the European larch with short, and the Japanese larch with large, twigs the hybrid possessed the longest branches with the highest needle biomass. This resulted in a crown structure of the hybrid crown similar to the Japanese larch together with a high needle density on branches as in the European larch. In total, the foliage biomass per crown length was about 30% higher in hybrid larch than in both of the parent species. Thus, the high carbon input for the stem heterosis was based on a “complementation principle” of advantageous parent features at the crown level. Similar slopes of foliage against sapwood area of stem and branches did not indicate a special need for a thick hybrid stem with respect to water transport.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Nicotiana (photosynthesis) ; Nitrogen ; Photosynthesis (control analysis) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of nitrogen supply during growth on the contribution of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) to the control of photosynthesis was examined in tobacco (Nicotiana tabacum L.). Transgenic plants transformed with antisense rbcS to produce a series of plants with a progressive decrease in the amount of Rubisco were used to allow the calculation of the flux-control coefficient of Rubisco for photosynthesis (CR). Several points emerged from the data: (i) The strength of Rubisco control of photosynthesis, as measured by CR, was altered by changes in the short-term environmental conditions. Generally, CR was increased in conditions of increased irradiance or decreased CO2. (ii) The amount of Rubisco in wild-type plants was reduced as the nitrogen supply during growth was reduced and this was associated with an increase in CR. This implied that there was a specific reduction in the amount of Rubisco compared with other components of the photosynthetic machinery. (iii) Plants grown with low nitrogen and which had genetically reduced levels of Rubisco had a higher chlorophyll content and a lower chlorophyll a/b ratio than wild-type plants. This indicated that the nitrogen made available by genetically reducing the amount of Rubisco had been re-allocated to other cellular components including light-harvesting and electron-transport proteins. It is argued that there is a “luxury” additional investment of nitrogen into Rubisco in tobacco plants grown in high nitrogen, and that Rubisco can also be considered a nitrogen-store, all be it one where the opportunity cost of the nitrogen storage is higher than in a non-functional storage protein (i.e. it allows for a slightly higher water-use efficiency and for photosynthesis to respond to temporarily high irradiance).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Biomass allocation ; Nicotiana ; Nitrogen nutrition ; Photosynthesis ; Relative growth rate ; Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) ; Transgenic plant (tobacco antisense DNA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wild-type tobacco (Nicotiana tabacum L.) plants and transgenic tobacco transformed with antisense rbcS to decrease expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) were grown at 300 mol-m−2 · s−1 irradiance and 20° C at either 0.1, 0.7 or 5 mM NH4NO3. In high nitrogen (N), growth was reduced in parallel with the inhibition of photosynthesis when Rubisco was decreased by genetic manipulation. In limiting N, photosynthesis was reduced strongly when Rubisco was decreased by genetic manipulation, but growth was hardly affected. At all N levels, decreased expression of Rubisco led to a decrease in the amount of starch accumulated in the leaves. There was a large increase of the specific leaf area (SLA; leaf area maintained per unit dry weight in the leaf) in plants with decreased Rubisco. Increased SLA was associated with an increased inorganic and a decreased carbon contribution to leaf structural dry weight. The increased SLA represents a more efficient investment of photosynthate with respect to maximisation of leaf area and light interception, and partly compensates for the decreased rate of photosynthesis in plants with decreased expression of Rubisco. The changes of starch content and SLA were particularly large in limiting N, when growth rate was effectively independent of the rate of photosynthesis. Increased N availability led to a large increase of the shoot/ root ratio, but only a small increase in SLA. It is argued that N availability and the availability of photosynthate both regulate storage and allocation of biomass to optimize resource utilization, but achieve this via different mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Light climate ; Nicotiana (photosynthesis) ; Photosynthesis ; Ribulose 1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant (tobacco, antisense DNA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tobacco (Nicotiana tabacum L.) plants transformed with ‘antisense’ rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 μmol·m−2·s−1 irradiance, and at 28°C at 100, 300 and 1000 μmol·m−2·s−1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 μmol·m−2·s−1)-grown plants are exposed to high (750–1000 μmol·m−2·s−1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 μmol·m−2·s−1) are suddenly exposed to high and saturating irradiance (1500–2000 μmol·m−2·s−1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in “sun” leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the “light” reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) ‘Antisense’ plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Annual plants ; Biomass partitioning ; Nitrogen nutrition ; Relative growth rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The hypothesis was tested that faster growth of nitrophilic plants at high nitrogen (N) nutrition is counterbalanced by faster growth of non-nitrophilic plants at low N-nutrition. Ten annual plant species were used which originated from habitats of different N-availability. The species' preference for N was quantified by the “N-number” of Ellenberg (1979), a relative measure of nitrophily. The plants were cultivated in a growth cabinet at five levels of ammonium-nitrate supply. At low N-supply, the relative growth rate (RGR) was independent of nitrophily. At high N-supply, RGR tended to be higher in nitrophilic than in non-nitrophilic species. However, the response of RGR to N-supply was strongly and positively correlated with the nitrophily of species. Increasing N-supply enhanced partitioning to leaf weight per total biomass (LWR) and increased plant leaf area per total biomass (LAR). Specific leaf weight (SLW) and LWR were both higher in non-nitrophilic than in nitrophilic species at all levels of N-nutrition. NAR (growth per leaf area or net assimilation rate) increased with nitrophily only under conditions of high N-supply. RGR correlated positively with LAR, irrespective of N-nutrition. Under conditions of high N-supply RGR correlated with SLW negatively and with NAR positively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 95 (1993), S. 153-163 
    ISSN: 1432-1939
    Keywords: Evaporation ; Aerodynamic conductance ; Canopy conductance ; Humidity response ; Soil water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Canopy-scale evaporation rate (E) and derived surface and aerodynamic conductances for the transfer of water vapour (gs and ga, respectively) are reviewed for coniferous forests and grasslands. Despite the extremes of canopy structure, the two vegetation types have similar maximum hourly evaporation rates (E max) and maximum surface conductances (gsmax) (medians = 0.46 mm h-1 and 22 mm s-1). However, on a daily basis, median E max of coniferous forest (4.0 mm d-1) is significantly lower than that of grassland (4.6 mm d-1). Additionally, a representative value of ga for coniferous forest (200 mm s-1) is an order of magnitude more than the corresponding value for grassland (25 mm s-1). The proportional sensitivity of E, calculated by the Penman-Monteith equation, to changes in gs is 〉0.7 for coniferous forest, but as low as 0.3 for grassland. The proportional sensitivity of E to changes in ga is generally ±0.15 or less. Boundary-line relationships between gs and light and air saturation deficit (D) vary considerably. Attainment of gsmax occurs at a much lower irradiance for coniferous forest than for grassland (15 versus about 45% of full sunlight). Relationships between gs and D measured above the canopy appear to be fairly uniform for coniferous forest, but are variable for grassland. More uniform relationships may be found for surfaces with relatively small ga, like grassland, by using D at the evaporating surface (D0) as the independent variable rather than D at a reference point above the surface. An analytical expression is given for determining D0 from measurable quantities. Evaporation rate also depends on the availability of water in the root zone. Below a critical value of soil water storage, the ratio of evaporation rate to the available energy tends to decrease sharply and linearly with decreasing soil water content. At the lowest value of soil water content, this ratio declines by up to a factor of 4 from the non-soil-water-limiting plateau. Knowledge about functional rooting depth of different plant species remains rather limited. Ignorance of this important variable makes it generally difficult to obtain accurate estimates of seasonal evaporation from terrestrial ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 121 (1995), S. 79-87 
    ISSN: 1573-5052
    Keywords: Canopy ; Evaporation ; Leaf area index ; Scaling ; Surface conductance ; Stomata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examine conductances for evaporation from both vegetation and soil in response to environmental variables. Data from a vertically-structured pristine forest of Nothofagus are presented as an example of the effects of biodiversity on the scaling of conductances between tiers of plant organisation. Available data sets of maximum leaf stomatal conductances (g lmax ) and bulk vegetation surface conductances (G smax ) are compared. Overall, the ratio G smax /g lmax is consistently close to 3 for seven major vegetation types of diverse structure. An analytical model accounts for this close relationship, and in particular how G smax is conservative against changes in leaf area index because of the compensating decrease in plant canopy transpiration and increase in soil evaporation as leaf area index diminishes. The model is also successfully tested by comparison with canopy conductances of emergent trees measured in the Nothofagus forest. The constraint of vegetation surface conductance and evaporation via environmental regulation by irradiance, air saturation deficit and root zone water supply are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...