ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-02-15
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-10-01
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-05-15
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-01-01
    Description: The two-dimensional wavelet transform is a highly efficient band-pass filter, which can be used to track features in satellite images from sequential paths. Wavelet analysis of NASA scatterometer and Special Sensor Microwave/Imager data has been used to obtain daily sea-ice drift information for the Arctic region. Comparison with ice motion derived from ocean buoys shows good quantitive agreement. Furthermore, the scatterometer results definitely complement passive-microwave radiometer results when there are cloud or surface effects. This outcome allows three sets of sea-ice-drift daily results from scatterometer, radiometer and buoy data to be merged as a composite map by data-fusion techniques. Based on the composite maps, the ice-flow streamlines are highly correlated with surface air-pressure contours. In order to quantify the wind effects on ice motion, empirical orthogonal functions are used in the principal-component analysis to isolate generalized patterns inherent in 6 months (fall/winter) of daily sea-ice motion data. It is found that 30% of sea-ice motion is highly correlated with 50% of the pressure field in modes 1 and 2. For the higher modes, sea-ice motion is also affected by ocean current, bathymetry and coastal boundary and therefore is not highly correlated with the wind field.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-03-01
    Print ISSN: 0278-4343
    Electronic ISSN: 1873-6955
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: For the first time we are able to derive ocean currents using the wavelet algorithm for feature tracking from two different sensors (MODIS and SeaWiFS) on different satellites. Satellite ocean color data provide an important insight to the marine biosphere because of their capability to quantify certain fundamental properties (such as phytoplankton pigment concentration, marine primary production, etc.) on a global basis. The mixed layer drift can be derived because the ocean color signal bears information from a much larger depth (10 to 30 meters) as compared with the sea surface temperature data. Although the drifter data are very limited in the study area, the comparison shows a general agreement between drifter data and satellite tracking results, especially for the cases near the Gulf Stream boundary.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Recently, the internal wave distribution maps in the China Seas have been compiled from hundreds of ERS-1/2, RADARSAT, and Space Shuttle SAR (Synthetic Aperture Radar) images from 1993 to 1999. Based on internal wave distribution map, most of internal waves in the northeast part of South China Sea were propagating westward. The wave crest can be as long as 200 km with amplitude of 100 m due to strong current from the Kuroshio branching out into the South China Sea. Based on the observations from drilling rigs near DongSha Island by Amoco Production Co., the solitons may be generated in a 4 km wide channel between Batan and Sabtang islands in Luzon Strait. The proposed generation mechanism is similar to the lee wave formation from a shallow topography. Both depression and elevation internal waves have been observed in the same RADARSAT ScanSAR image on May 4, 1998 near DongSha Island. Furthermore, depression and elevation internal waves have also been observed by SAR at the same location on the shelf in April and June, 1993 (in different seasons) respectively. Numerical models have been used to interpret their generation mechanism and evolution processes. Based on the SAR images, near DongSha Island, the westward propagating huge internal solitons are often encountered and diffracted/broken by the coral reefs on the shelf. After passing the island, the diffracted waves will re-merge or interact with each other. It has been observed that after the nonlinear wave-wave interaction, the phase of wave packet is shifted and wavelength is also changed. Examples of mesoscale features observed in SAR images, such as fronts, raincells, bathymetry, ship wakes, and oil spills will be presented. Recent mooring measurements in April 1999 near Dongsha Island, future field test ASIAEX (Asian Seas International Acoustics Experiment) planned for April 2001, and some pretest survey data will be discussed in this paper.
    Keywords: Earth Resources and Remote Sensing
    Type: Pacific Ocean Remote Sensing; Dec 05, 2000 - Dec 08, 2000; Goa; India
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Wavelet analysis of NASA scatterometer (NSCAT) backscatter and Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) radiance data can be used to obtain daily sea ice drift information for the Arctic region. This technique provides improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing data from satellite synthetic aperture radars. Comparisons with ice motion derived from ocean buoys give good quantitative agreement. Both comparison results from NSCAT and SSM/I are compatible, and the results from NSCAT can definitely complement that from SSM/I when there are cloud or surface effects. Then three sea-ice drift daily results from NSCAT, SSM/I, and buoy data can be merged as a composite map by some data fusion techniques. The ice flow streamlines are highly correlated with surface air pressure contours. Examples of derived ice-drift maps in December 1996 illustrate large-scale circulation reversals over a period of four days. A method for deriving divergence and shear at the large-scale has been developed and comparison between buoys and satellite results shows a good agreement. These calibrated/validated results indicate that NSCAT, SSM/I merged daily ice motion are suitably accurate to identify and closely locate sea ice processes, and to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model. For demonstration purpose, the ice velocities derived from satellite data are compared with the ice velocities derived from a coupled ice-ocean interaction model. The comparison reveals that the general circulation patterns of the two are quite similar but the ice velocity differences between the two are quite significant. In order to quantify the wind effects on ice motion, empirical orthogonal functions (EOF) are used in the principal component analysis for both ice motion and pressure field. Some preliminary results of sea-ice motion from QuikScat will also be presented.
    Keywords: Oceanography
    Type: Pacific Ocean Remote Sensing; Dec 05, 2000 - Dec 08, 2000; Goa; India
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: QuikSCAT backscatter, AMSR and DMSP SSM/I radiance data have been used to derive sea ice motion for both the Arctic and Antarctic region using the wavelet analysis tracking method. All results from QuikSCAT, AMSR and SSM5 are compatible with buoys and can then be merged by data fusion method to generate composite sea ice motion maps for more complete coverage. Furthermore, based on this merged data set daily sea-ice deformation (shear, and convergence) maps have been produced and show consistent spatial and temporal patterns. Temporal correlation maps between ice deformation and SSM/II ice concentration show interesting results in the Arctic, especially the coast area. In this study, principal component analysis for both the merged ice tracking result from satellite data and pressure field from buoy have also been examined for the relationship between the principal components and eigenvectors from these two data sets. While the result shows that principal components of modes 1 and 2 from two data sets are highly correlated which confirms that wind forcing is a major factor driving the ice drift, it also reveals that other high energy modes are not highly correlated which maybe caused by coastal effects. Principal component analysis of Arctic sea-ice motion during fall/winter period in different years shows the reverse of dominant modes or patterns is related to the Arctic Oscillation.
    Keywords: Meteorology and Climatology
    Type: IUGG Meeting; Jul 07, 2003 - Jul 12, 2003; Sapporo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: QuikSCAT backscatter and DMSP SSM/I radiance data are used to derive sea ice motion for both the Arctic and Antarctic region using wavelet analysis method. This technique provides improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing satellite data from Synthetic Aperture Radar (SAR). Sea ice motion of the Arctic for the period from October 1999 to March 2000 derived from QuikSCAT and SSM/I data agrees well with that derived from ocean buoys quantitatively. Thus the ice tracking results from QuikSCAT and SSM/I are complement to each other, Then, three sea-ice drift daily results from QuikSCAT, SSM/I, and buoy data can be merged to generate composite maps with more complete coverage of sea ice motion than those from single data source. A series of composite sea ice motion maps for December 1999 show that the major circulation patterns of sea ice motion are changing and shifting significantly within every four days and they are dominated by wind forcing. Sea-ice drift in the summer can not be derived from NSCAT and SSM/I data. In later summer of 1999 (in September), however, QuikSCAT data can provide good sea ice motion information in the Arctic. QuiksCAT can also provide at least partial sea ice motion information until June 15 in early summer 1999. For the Antarctic, case study shows that sea ice motion derived from QuikSCAT data is predominantly forced by and is consistent with wind field derived from QuikSCAT around the polar region. These calibrated/validated results indicate that QuikSCAT, SSM/I, and buoy merged daily ice motion are suitably accurate to identify and closely locate sea ice processes, and to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model.
    Keywords: Meteorology and Climatology
    Type: NASA Oceanography Conference; Apr 02, 2001 - Apr 05, 2001; Miami, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...