ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (12)
  • 1
    Publication Date: 2000-06-01
    Print ISSN: 0021-9142
    Electronic ISSN: 2195-0571
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: In this work we present a method to solve the impulsive minimum fuel maneuver problem for a distributed set of spacecraft. We develop the method assuming a fully non-linear dynamics model and parameterize the problem to allow the method to be applicable to any flight regime. Furthermore, the approach is not limited by the inter-spacecraft separation distances and is applicable to both small formations as well as constellations. We assume that the desired relative motion is driven by mission requirements and has been determined a-priori. The goal of this work is to develop a technique to achieve the desired relative motion in a minimum fuel manner. To permit applicability to multiple flight regimes, we have chosen to parameterize the cost function in terms of the maneuver times expressed in a useful time system and the maneuver locations expressed in their Cartesian vector representations. We also include as an independent variable the initial reference orbit to solve for the optimal injection orbit to minimize and equalize the fuel expenditure of distributed sets of spacecraft with large inter-spacecraft separations. In this work we derive the derivatives of the cost and constraints with respect to all of the independent variables.
    Keywords: Astrodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The Magnetospheric Imaging Constellation (MagIC) is a NASA space science concept to study the Earth's Magnetosphere. The concept proposes to apply tomography techniques using an array of spacecraft to obtain three dimensional images of the Earth's magnetosphere. This paper presents an optimal orbit design to ensure that the constellation is in the desired region of the magnetosphere for maximum time. The solution is found using a steepest descent optimization algorithm that takes into account perturbations from the non-spherical Earth, drag, Sun, Moon and other significant bodies. The solution also satisfies constraints on maximum eclipse duration and geometry constraints to allow an adequate GPS navigation solution. We present three solutions depending upon the epoch of the primary science: vernal equinox, summer solstice, and a third midway between the vernal equinox and summer solstice. Orbit insertion is also considered. All spacecraft are assumed to be launched on a single vehicle into a nominal orbit and the (Delta)V's to achieve the nominal orbit are presented. After insertion into the nominal orbit, each spacecraft undergoes a phasing maneuver to place it in the appropriate position with respect to the rest of the constellation. We present a minimum fuel approach to maneuver each spacecraft from the nominal orbit into the desired final orbit.
    Keywords: Astrodynamics
    Type: 16th International Symposium on Space Flight Dynamics; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Leonardo-BRDF (Bidirectional Reflectance Distribution Function) is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required Delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated Delta-V's are calculated to maintain the formation in the presence of perturbations.
    Keywords: Environment Pollution
    Type: 2001 Aerospace Conference; Mar 10, 2001 - Mar 17, 2001; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: In this paper we present a comparison of optimization approaches to the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP), Quasi-Newton, Simplex, Genetic Algorithms, and Simulated Annealing. Each method is applied to a variety of test cases including, circular to circular coplanar orbits, LEO to GEO, and orbit phasing in highly elliptic orbits. We also compare different constrained optimization routines on complex orbit rendezvous problems with complicated, highly nonlinear constraints.
    Keywords: Spacecraft Propulsion and Power
    Type: 26th Annual Guidance and Control Conference; Feb 01, 2003 - Feb 28, 2003; Breckenridge, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.
    Keywords: Astrodynamics
    Type: 2001 Flight Mechanics Symposium; 131; NASA/CP-2001-209986
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: The problem of minimum-fuel formation reconfiguration for the Magnetospheric Multi-Scale (MMS) mission is studied. This reconfiguration trajectory optimization problem can be posed as a nonlinear optimal control problem. In this research, this optimal control problem is solved using a spectral collocation method called the Gauss pseudospectral method. The objective of this research is to provide highly accurate minimum-fuel solutions to the MMS formation reconfiguration problem and to gain insight into the underlying structure of fuel-optimal trajectories.
    Keywords: Astrodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: In this paper we present, a comparison of trajectory optimization approaches for the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP). Quasi- Newton and Nelder-Meade Simplex. Several cost function parameterizations are considered for the direct approach. We choose one direct approach that appears to be the most flexible. Both the direct and indirect methods are applied to a variety of test cases which are chosen to demonstrate the performance of each method in different flight regimes. The first test case is a simple circular-to-circular coplanar rendezvous. The second test case is an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit phasing maneuver sequence in a highly elliptic orbit. For each test case we present a comparison of the performance of all methods we consider in this paper.
    Keywords: Spacecraft Propulsion and Power
    Type: 26th Annual Guidance and Control Conference; Feb 01, 2003 - Feb 28, 2003; Breckenridge, CO.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In this paper we present a preliminary optimal orbit analysis for the Laser Interferometer Space Antenna (LISA). LISA is a NASA/ESA mission to study gravitational waves and test predictions of general relativity. The nominal formation consists of three spacecraft in heliocentric orbits at 1 AU and trailing the Earth by twenty degrees. This configuration was chosen as a trade off to reduce the noise sources that will affect the instrument and to reduce the fuel to achieve the final orbit. We present equations for the nominal orbit design and discuss several different measures of performance for the LISA formation. All of the measures directly relate the formation dynamics to science performance. Also, constraints on the formation dynamics due to spacecraft and instrument limitations are discussed. Using the nominal solution as an initial guess, the formation is optimized using Sequential Quadratic Programming to maximize the performance while satisfying a set of nonlinear constraints. Results are presented for each of the performance measures.
    Keywords: Astronautics (General)
    Type: 25th Annual Guidance and Control Conference; Feb 06, 2002 - Feb 10, 2002; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Magnetospheric Multiscale Mission (MMS) is a NASA mission intended to make fundamental advancements in our understanding of the Earth's Magnetosphere. There are three processes that MMS will study including magnetic reconnection, charged particle acceleration, and turbulence. There are four phases in the nominal mission and this work addresses some of the outstanding issues in phase I. The nominal phase I orbit is 1.2 x 12 R(sub e) highly elliptic orbit with four spacecraft nominally forming a regular tetrahedron. In this paper we investigate the relative dynamics of the four MMS spacecraft about an assumed reference orbit. There are several tetrahedron dimensions required in Phase I of the mission and in this work we design optimal tetrahedrons for the 10 km baseline. The performance metric used in the optimization process is directly related to the science return, and is based on an extension of previous work performed by Glassmeier. The optimizer we use is a commercially available Sequential Quadratic Programming (SQP) routine. Multiple optimal solutions are found, and we characterize how the performance of the formation varies between different regions of the reference orbit.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC Flight Mechanics Symposium; Oct 28, 2003 - Oct 30, 2003; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...