ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2004-07-01
    Description: Five large earthquakes shook southern Calabria in February-March 1783. We focused on the first shock (Me 6.9), which occurred on 5 February in the Gioia Tauro Plain. Most investigators attribute the event to a W-dipping, high-angle fault running at the base of the Aspromonte crystalline bedrock on the ESE side of the Plain (Aspromonte Fault). Other workers contend that the earthquake was generated by an E-dipping, low-angle blind fault (Gioia Tauro Fault) similar to the adjacent Messina Straits Fault. In 1999-2000 we carried out four geochemical surveys in the Gioia Tauro Plain with the aim of contributing to this debate with an independent line of evidence. We sampled 240 groundwater sites and measured a suite of in-situ physical and chemical parameters. Our goal was to gain new insight into the seismogenic source by identifying geochemical anomalies associated with the deepening of the hydrological circuits due to the presence of enhanced faulting/fracturing. The deep-fluid signatures are mainly represented by temperature, salinity, total carbon and radon anomalies. We identified three zones of dominant deep fluid discharge: the Nicotera-Galatro area (along the Nicotera-Galatro portion of the NW-trending Nicotera-Gioiosa Jonica lineament), a small NW-SE trending area between Gioia Tauro and Seminara, and the coastline between Rosarno and Palmi. This latter sector locates just above the upper edge of the hypothesised Gioia Tauro Fault. Most of the geochemical anomalies are recorded around Rosarno, at the intersection between the Gioia Tauro Fault and the Nicotera-Gioiosa Jonica lineament. In contrast, no evidence of groundwater deepening and active fracturing was found along the Aspromonte Fault. Based on our new findings we updated the concepts of Geochemically Active Fault Zone and Geochemical Interaction Fault Zone in view of the modern understanding of the hydro-mechanical properties of fault zones and the faulting mechanisms promoting fracture permeability in the crust. © 2004 Kluwer Academic Publishers.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...