ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (8)
  • 1
    Publication Date: 2017-10-02
    Description: This viewgraph presentation evaluates CFD (Computational Fluid Dynamics) tools for solving stage separation problems. The demonstration and validation of the tools is for a second generation RLV (Reusable Launch Vehicle) stage separation. The flow solvers are: Cart3D; Overflow/Overflow-D; Unic.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Twelfth Thermal and Fluids Analysis Workshop; NASA/CP-2002-211783
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-12
    Description: A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Propulsion and Power (ISSN 0748-4658); Volume 20; No. 3; 385-393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.
    Keywords: Mechanical Engineering
    Type: PERC Prolusion Symposium; Oct 26, 2000 - Oct 27, 2000; Cleveland,OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Objective to develop an unshrouded impeller design, which a meets the performance requirements of a 3-stage fuel pump with a 2-stage pump design, has been accomplished. Performance of the baseline unshrouded impeller has been experimentally verified. Unshrouded impeller trade study and final 6+6 unshrouded impeller configuration has been presented. Structurally viable, 6+6-impeller design concept has been produced. Based on results presented in this study, at a nominal 10% tip-clearance, the 6+6 impeller design would increase payload to orbit by almost 625 lbs. per engine. The RLV vehicle requires 7 engines, therefore, application of high head unshrouded technology would increase payload capability by as much as 4,375 lbs. per vehicle.
    Keywords: Mechanical Engineering
    Type: AIAA Paper 2000-3243 , Joint Propulsion; Jul 16, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A team of engineers at NASA/MSFC and Boeing, Rocketdyne division, are developing unshrouded impeller technologies that will increase payload and decrease cost of future reusable launch vehicles. Using the latest analytical techniques and experimental data, a two-stage unshrouded fuel pump is being designed that will meet the performance requirements of a three-stage shrouded pump. Benefits of the new pump include lower manufacturing costs, reduced weight, and increased payload to orbit.
    Keywords: Mechanical Engineering
    Type: AIAA Paper 2000-3243 , Joint Propulsion; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A computational heat transfer methodology was developed to study the dual-engine linear aerospike plume induced base-heating environment during one power-pack out, in ascent flight. One power-pack out results in reduction of power levels for both engines. That, in turn, reduces the amount of base-bleed and changes the distribution of base-bleed on the two pillows. Hence, the concern of increased base-heating during power-pack out. The thermo-flowfield of the entire vehicle was computed. The computational methodology for the convective heating is based on a three-dimensional, finite-volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation. The computational methodology for the radiative heating is based on a three-dimensional, finite-volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed and they compared well with those measured from an installed linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out ascent scenarios was computed and is presented here. The power-pack out condition has the most impact on convective base-heating when it happens early in flight. The some of its impact comes from the asymmetric and reduced base-bleed.
    Keywords: Aircraft Design, Testing and Performance
    Type: 36th AIAA Thermophysics Conference; Jun 23, 2003 - Jun 26, 2003; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The objectives of this viewgraph presentation are to predict the following: (1) dual-engine base-heating at 57% PL at sea level, and (2) dual-engine base-heating during PPO at three ascent abort trajectories. A systematically anchored computational fluid dynamics and heat transfer three-dimensional transfer simulation is being used to study the effect of reduced power levels on base-heating environments during sea level testing and during PPO. Preliminary results show the following: (1) convective heating is higher for the 57% PL than for 100% PL on most of the pillows and flex seals during sea level testing; and (2) convective heating on pillows and flex seals on the 'off' engine side is higher than that on the 'on' engine side.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/MSFC Fluids Workshop; Apr 04, 2001 - Apr 05, 2001; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A computational heat transfer design methodology was developed to study tbe dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. in this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points secected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The soume of its impact comes from the asymmetric and reduced base bleed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Propulsion and Power; 20; 3; 385-393|36th AIAA Thermophysics Conference; Jun 23, 2003 - Jun 26, 2003; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...