ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (13)
  • 1
    Publication Date: 2018-06-11
    Description: COMSAC goals include increasing the acceptance of CFD as a viable tool for S&C predictions, as well as to focus CFD development and improvement towards the needs of the S&C community. We view this as a symbiotic relationship, with increasing improvement of CFD promoting increasing acceptance by the S&C community, and increasing acceptance spurring further improvements. In this presentation we want to provide an overview for the non CFD expert of current CFD strengths and weaknesses, as well as to highlight a few emerging capabilities that we feel will lead toward increased usefulness in S&C applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: COMSAC: Computational Methods for Stability and Control; 48-68; NASA/CP-2004-213028/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A Navier-Stokes computation is performed for a ducted-fan configuration with the goal of predicting rotor-stator noise generation without having to resort to heuristic modeling. The calculated pressure field in the inlet region is decomposed into classical infinite-duct modes, which are then used in either a hybrid finite-element/Kirchhoff surface method or boundary integral equation method to calculate the far field noise. Comparisons with experimental data are presented, including rotor wake surveys and far field sound pressure levels for two blade passage frequency (BPF) tones.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2001-0664 , Aerospace Sciences; Jan 08, 2001 - Jan 11, 2001; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low-speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant-width non-metric standoff. The computations were performed at to a nominal approach and landing flow conditions.The computed high-lift flow characteristics for the model in both the tunnel and in free-air environment are presented. The computed wing pressure distributions agreed well with the measured data and they both indicated a small effect due to the tunnel wall interference effects. However, the wall interference effects were found to be relatively more pronounced in the measured and the computed lift, drag and pitching moment. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted reasonably well. The numerical results are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage forebody pressure distributions and the resulting impact on the configuration longitudinal aerodynamic characteristics.
    Keywords: Aerodynamics
    Type: NASA/TP-2002-211779 , L-18111 , NAS 1.60:211779
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Opportunities for breakthroughs in the large-scale computational simulation and design of aerospace vehicles are presented. Computational fluid dynamics tools to be used within multidisciplinary analysis and design methods are emphasized. The opportunities stem from speedups and robustness improvements in the underlying unit operations associated with simulation (geometry modeling, grid generation, physical modeling, analysis, etc.). Further, an improved programming environment can synergistically integrate these unit operations to leverage the gains. The speedups result from reducing the problem setup time through geometry modeling and grid generation operations, and reducing the solution time through the operation counts associated with solving the discretized equations to a sufficient accuracy. The opportunities are addressed only at a general level here, but an extensive list of references containing further details is included. The opportunities discussed are being addressed through the Fast Adaptive Aerospace Tools (FAAST) element of the Advanced Systems Concept to Test (ASCoT) and the third Generation Reusable Launch Vehicles (RLV) projects at NASA Langley Research Center. The overall goal is to enable greater inroads into the design process with large-scale simulations.
    Keywords: Aerodynamics
    Type: NASA/TM-2002-211747 , L-18196 , NAS 1.15:211747
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.
    Keywords: Aerodynamics
    Type: NASA/TM-2001-211262 , NAS 1.15:211262 , L-18132
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.
    Keywords: Aerodynamics
    Type: NASA/TM-2001-211263 , NAS 1.15:211263 , L-18133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The use of differential equations such as Eikonal, Hamilton-Jacobi and Poisson for the economical calculation of the nearest wall distance d, which is needed by some turbulence models, is explored. Modifications that could palliate some turbulence-modeling anomalies are also discussed. Economy is of especial value for deforming/adaptive grid problems. For these, ideally, d is repeatedly computed. It is shown that the Eikonal and Hamilton-Jacobi equations can be easy to implement when written in implicit (or iterated) advection and advection-diffusion equation analogous forms, respectively. These, like the Poisson Laplacian term, are commonly occurring in CFD solvers, allowing the re-use of efficient algorithms and code components. The use of the NASA CFL3D CFD program to solve the implicit Eikonal and Hamilton-Jacobi equations is explored. The re-formulated d equations are easy to implement, and are found to have robust convergence. For accurate Eikonal solutions, upwind metric differences are required. The Poisson approach is also found effective, and easiest to implement. Modified distances are not found to affect global outputs such as lift and drag significantly, at least in common situations such as airfoil flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-2232 , 34th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The scarf inlet has the potential to reduce aircraft inlet noise radiation to the ground by reflecting it into the space above the engine. Without forward motion of the engine, the non-symmetry of the inlet causes inflow distortion which generates noise that is greater than the noise reduction of the scarf. However, acoustic evaluations of aircraft engines are often done on static test stands. A method to reduce inflow distortion by boundary layer suction is proposed and evaluated using a model of a high bypass ratio engine located in an anechoic chamber. The design goal of the flow control system is to make the inflow to the inlet circumferentially uniform and to eliminate reversed flow. This minimizes the inflow distortion and allows for acoustic evaluation of the scarf inlet on a static test stand. The inlet boundary layer suction effectiveness is evaluated both by aerodynamic and by acoustic measurements. Although the design goal is not met, the control system is found to have a beneficial effect on the engine operation, reducing blade stall and speed variation. This is quantified by two acoustic benefits, reduction both of the variability of tone noise and of the low frequency wideband noise due to the inflow distortion. It is felt that a compromise in the manufacture of the control hardware contributes to the inability of the control system to perform as expected from the analysis. The control system with sufficient authority is felt to have the potential to permit reliable acoustic testing in a static configuration of engines with non-symmetric inlets. Because the control system can improve operation of the engine, it may also have the potential to reduce noise and vibration and enhance engine longevity during low speed ground operations in the terminal area.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2002-2432 , 8th AIAA/CESA Aeroacoustics Conference; Jun 16, 2002 - Jun 18, 2002; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The object of this paper is to investigate the feasibility of applying CFD methods to aerodynamic analyses for aircraft stability and control. The integrated aerodynamic parameters used in stability and control, however, are not necessarily those extensively validated in the state of the art CFD technology. Hence, an exploratory study of such applications and the comparison of the solutions to available experimental data will help to assess the validity of the current computation methods. In addition, this study will also examine issues related to wind tunnel measurements such as measurement uncertainty and support interference effects. Several sets of experimental data from the NASA Langley 14x22-Foot Subsonic Tunnel and the National Transonic Facility are presented. Two Navier-Stokes flow solvers, one using structured meshes and the other unstructured meshes, were used to compute longitudinal static stability derivatives for an advanced Blended Wing Body configuration over a wide range of angles of attack. The computations were performed for two different Reynolds numbers and the resulting forces and moments are compared with the above mentioned wind tunnel data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2005-0045 , 43rd AIAA Aerospace Sciences Meeting and Exhibit; Jan 10, 2005 - Jan 13, 2005; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A Navier-Stokes computation is performed for a ducted-fan configuration with the goal of predicting rotor-stator noise generation without having to re- to heuristic modeling. The calculated pressure field in the inlet region is decomposed into classical infinite-duct, modes, which are then used in either a hybrid finite-element /Kirchhoff surface method or boundary integral equation method to calculate the far field noise. Comparisons with experimental data are presented, including rotor wake surveys and far field sound pressure levels for 2 blade passage frequency (BPF) tones.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2001-0664 , Aerospace Sciences; Jan 08, 2001 - Jan 11, 2001; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...