ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Propulsion and Power  (6)
  • 2000-2004  (6)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: Contents include the folloving: 1. Motivation. Support NASA's 3d generation launch vehicle technology program. RBCC is promising candidate for 3d generation propulsion system. 2. Approach. Focus on ejector mode p3erformance (Mach 0-3). Perform testing on established flowpath geometry. Use conventional propulsion measurement techniques. Use advanced optical diagnostic techniques to measure local combustion gas properties. 3. Objectives. Gain physical understanding of detailing mixing and combustion phenomena. Establish an experimental data set for CFD code development and validation.
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC Spring Fluids Workshop; Apr 23, 2003; Birmingham, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The present results indicated that: 1.Significant RBCC ejector mode database has been generated for single and twin thruster configuration and for global and local measurements. 2. Ongoing analysis and correlation effort for MSFC CFD modeling and turbulent shear layer analysis was completed. 3. The potential follow-on activities are: detailed measurements of air flow static pressure and velocity profiles; investigation other thruster spacing configurations; performing fundamental shear layer mixing study; and demonstrating single-shot Raman measurements.
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC Fall Fluids Workshop 2002; Nov 19, 2002 - Nov 21, 2002; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.
    Keywords: Spacecraft Propulsion and Power
    Type: JANNAF 38th Combustion Subcommittee Meeting; Apr 08, 2002 - Apr 12, 2002; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: A uni-element liquid propellant combustion performance and instability study for liquid RP-1 and hot oxygen-rich pre-burner products was conducted, at a chamber pressure of about 1000 psi. using flush and recessed swirl injectors. High-frequency pressure transducer measurements were analyzed to yield the characteristic frequencies which were compared to expected frequencies of the chamber. Modes, which were discovered to be present within the main chamber included, the first longitudinal, detected at approximately 1950 Hz, and the second longitudinal mode at approximately 3800 Hz. An additional first longitudinal quarter wave mode was measured at a frequency of approximately 23000 Hz for the recessed swirl injector configuration. The characteristic instabilities resulting from these experiments were relatively weak averaging 0.2% to 0.3% of the chamber pressure.
    Keywords: Spacecraft Propulsion and Power
    Type: 52nd JANNAF Joint Propulsion Meeting; May 10, 2004 - May 14, 2004; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: The experimental/analytical research work described here addresses the rocket-ejector mode (Mach 0-2 operational range) of the RBCC engine. The experimental phase of the program includes studying the mixing and combustion characteristics of the rocket-ejector system utilizing state-of-the-art diagnostic techniques. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was utilized as the experimental platform. The goals of the experimental phase of the research being conducted at Penn State are to: (a) systematically increase the range of rocket-ejector understanding over a wide range of flow/geometry parameters and (b) provide a comprehensive data base for evaluating and anchoring CFD codes. Concurrent with the experimental activities, a CFD code benchmarking effort at Marshall Space Flight Center is also being used to further investigate the RBCC rocket-ejector mode. Experiments involving the single rocket based optically-accessible rocket-ejector system have been conducted for Diffusion and Afterburning (DAB) as well as Simultaneous Mixing and Combustion configurations. For the DAB configuration, air is introduced (direct-connect) or ejected (sea-level static) into a constant area mixer section with a centrally located gaseous oxygen (GO2)/gaseous hydrogen (GH2) rocket combustor. The downstream flowpath for this configuration includes a diffuser, an afterburner and a final converging nozzle. For the SMC configuration, the rocket is centrally located in a slightly divergent duct. For all tested configurations, global measurements of the axial pressure and heat transfer profiles as well as the overall engine thrust were made. Detailed measurements include major species concentration (H2 O2 N2 and H2O) profiles at various mixer locations made using Raman spectroscopy. Complementary CFD calculations of the flowfield at the experimental conditions also provide additional information on the physics of the problem. These calculations are being conducted at Marshall Space Flight Center to benchmark the FDNS code for RBCC engine operations for such configurations. The primary fluid physics of interests are the mixing and interaction of the rocket plume and secondary flow, subsequent combustion of the fuel rich rocket exhaust with the secondary flow and combustion of the injected afterburner flow. The CFD results are compared to static pressure along the RBCC duct walls, Raman Spectroscopy specie distribution data at several axial locations, net engine thrust and entrained air for the SLS cases. The CFD results compare reasonably well with the experimental results.
    Keywords: Spacecraft Propulsion and Power
    Type: Propulsion; Nov 13, 2000 - Nov 17, 2000; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The status of the RBCC ejector mode research program at Penn State is reviewed. Recent hardware modifications and measurement system improvements are discussed, including the motivation for these changes. Results from a series of tests with a single thruster configuration at a chamber pressure of 200 psia and with an area ratio 3.3 nozzle are presented. These results indicate that the primary (rocket exhaust) and secondary (entrained air) flow streams mix much more rapidly than a previous test series with an area ratio of 6.0 nozzle. Finally, the plans for a test series with a twin thruster configuration are discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: Propulsion; Oct 26, 2000 - Oct 27, 2000; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...