ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: This paper presents Reynolds-averaged Navier-Stokes calculations for a prototype Martian rotorcraft. The computations are intended for comparison with an ongoing Mars rotor hover test at NASA Ames Research Center. These computational simulations present a new and challenging problem, since rotors that operate on Mars will experience a unique low Reynolds number and high Mach number environment. Computed results for the 3-D rotor differ substantially from 2-D sectional computations in that the 3-D results exhibit a stall delay phenomenon caused by rotational forces along the blade span. Computational results have yet to be compared to experimental data, but computed performance predictions match the experimental design goals fairly well. In addition, the computed results provide a high level of detail in the rotor wake and blade surface aerodynamics. These details provide an important supplement to the expected experimental performance data.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2002-2815 , 20th AIAA Applied Aerodynamics Conference; Jun 24, 2002 - Jun 26, 2002; Saint Louis, MO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.
    Keywords: Spacecraft Design, Testing and Performance
    Type: CNES''s International Symposium on Formation Flying Missions and Technologies; Oct 29, 2002 - Oct 30, 2002; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Mars Reconnaissance Orbiter will launch in August 2005 at Cape Canaveral Air Force Station. The heavyweight spacecraft will use a Lockheed-Martin Atlas V-401 launch vehicle. It will be the first mission in a low Mars Orbit to characterize the surface, subsurface, and atmospheric properties. The intensive science operation imposes a great challenge for Navigation to satisfy the stringent requirements. This paper describes navigation key requirements, major challenges, and the sophisticated dynamic modeling. It also details navigation strategy and processes for various mission phases. Mars Reconnaissance Orbiter will return significant amount of scientific data in support of the objectives set by the Mars Exploration Program. A robust and precise navigation is the key to the success of this mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 04-2566 , AIAA/AAS Astrodynamics Specialist Conference; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper evaluates several navigation approaches for the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of satellites flying in highly eccentric Earth orbits. For this investigation, inter-satellite separations of approximately 10 kilometers near apogee are used for the first two phases of the MMS mission. Navigation approaches were studied using ground station two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, and cross-link range measurements between the members of the formation. An absolute position accuracy of 15 kilometers or better can be achieved with most of the approaches studied, and a relative position accuracy of 100 meters or better can be achieved at apogee in several cases.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 18th International Symposium on Space Flight Dynamics; Oct 11, 2004 - Oct 15, 2004; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...