ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (2)
  • 2000-2004  (2)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2011-08-23
    Description: Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Letters to Nature; Volume 415; 985-987
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Galileo spacecraft has made seven close flybys of Jupiter's moon Callisto. During the closest of these (C22), which approached to within 535 km of the surface, the plasma wave instrument detected a very clear upper hybrid emission as the spacecraft passed near the moon. The peak electron density indicated by the upper hybrid resonance emission was 400/cc, almost one-thousand times the, electron density in the magnetosphere of Jupiter at the orbit of Callisto. These observations indicate that Callisto is probably surrounded by a dense ionospheric-like plasma.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Paper 2000GL003751 , Geophysical Research Letters (ISSN 0094-8276); 27; 13; 1867-1870
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...