ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (1)
  • 2000-2004  (1)
  • 1
    Publication Date: 2019-07-13
    Description: Mars Orbiter Laser Altimeter (MOLA) topography and gravity models from 5 years of Mars Global Surveyor (MGS) spacecraft tracking provide a window into the structure of the Martian crust and upper mantle. We apply a finite-amplitude terrain correction assuming uniform crustal density and additional corrections for the anomalous densities of the polar caps, the major volcanos, and the hydrostatic flattening of the core. A nonlinear inversion for Moho relief yields a crustal thickness model that obeys a plausible power law and resolves features as small as 300 km wavelength. On the basis of petrological and geophysical constraints, we invoke a mantle density contrast of 600 kg m-3; with this assumption, the Isidis and Hellas gravity anomalies constrain the global mean crustal thickness to be 〉45 km. The crust is characterized by a degree 1 structure that is several times larger than any higher degree harmonic component, representing the geophysical manifestation of the planet's hemispheric dichotomy. It corresponds to a distinction between modal crustal thicknesses of 32 km and 58 km in the northern and southern hemispheres, respectively. The Tharsis rise and Hellas annulus represent the strongest components in the degree 2 crustal thickness structure. A uniform highland crustal thickness suggests a single mechanism for its formation, with subsequent modification by the Hellas impact, erosion, and the volcanic construction of Tharsis. The largest surviving lowland impact, Utopia, post-dated formation of the crustal dichotomy. Its crustal structure is preserved, making it unlikely that the northern crust was subsequently thinned by internal processes.
    Keywords: Geophysics
    Type: LPI-Contrib-1199 , Paper-2004JE002262 , Journal of Geophysical Research (ISSN 0148-0227); 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...