ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: Long-wavelength, relative high amplitude-magnetic anomalies obtained at satellite altitudes have provided an understanding of the nature of the deeper crust of the Earth. We have studied one such long-wavelength (19 nT positive, -6 nT negative) feature on the Canada Basin continental margin in the Northwest and Yukon Territories, Canada. This area is also the focus of significant stress and earthquake activity. We interpret this anomaly and associated tectonic activity with this region's position at or near the fulcrum of the scissors-like opening of the Canada Basin in the mid-Mesozoic Era.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Hyper-X (X-43A) program is a flight experiment to demonstrate scramjet performance and operability under controlled powered free-flight conditions at Mach 7 and 10. The Mach 7 flight was successfully completed on March 27, 2004. Thermocouple instrumentation in the hot structures (nose, horizontal tail, and vertical tail) recorded the flight thermal response of these components. Preflight thermal analysis was performed for design and risk assessment purposes. This paper will present a comparison of the preflight thermal analysis and the recorded flight data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Paper 109-A0016 , Fifteenth Annual Thermal and Fluids Analysis Workshop; Aug 29, 2004 - Sep 03, 2004; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: The heat pipe code LERCHP has been revised, corrected, and extended. New features include provisions for pipes with curvature and bends in "G" fields. Heat pipe limits are examined in detail and limit envelopes are shown for some sodium and lithium-filled heat pipes. Refluxing heat pipes and gas-loaded or variable conductance heat pipes were not considered.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2000-209807 , E-12113 , NAS 1.15:209807
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-15
    Description: Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of 7 km on 1) an ocean and 2) a layer of bedrock. Knowledge of the ionospheric contributions to the time delay of the low-frequency subsurface radar is shown to be important in obtaining accurate depth information.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-15
    Description: The origin of whistler mode radiation in the plasmasphere is examined from three years of plasma wave observations from the Dynamics Explorer and three years from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. These data are used to construct plasma wave intensity maps of whistler mode radiation in the plasmasphere. The highest average intensities of the radiation in the wave maps show source locations and/or sites of wave amplification. Each type of emission is classified based on its magnetic latitude and longitude rather than any spectral feature. Equatorial electromagnetic (EM) emissions (approx. 30-330 Hz), plasmaspheric hiss (approx. 330 Hz - 3.3 kHz), chorus (approx. 2 kHz - 6 kHz), and VLF transmitters (approx. 10-50 kHz) are the main types of waves that are clearly delineated in the plasma wave maps. Observations of the equatorial EM emissions show that the most intense region is on or near the magnetic equator in the afternoon sector and that during times of negative B(sub z) (interplanetary magnetic field),the maximum intensity moves from L values of 3 to less than 2. These observations are consistent with the origin of this emission being particle-wave interactions in or near the magnetic equator. Plasmaspheric hiss shows high intensity at high latitudes and low altitudes (L shells from 2 to 4) and in the magnetic equator over L values from 2 to 3 in the early afternoon sector. The longitudinal distribution of the hiss intensity (excluding the enhancement at the equator) is similar to the distribution of lightning: stronger over continents than over the ocean, stronger in the summer than winter, and stronger on the dayside than nightside. These observations strongly support lightning as the dominant source for plasmaspheric hiss, which through particle-wave interactions, maintains the slot region in the radiation belts. The enhancement of hiss at the magnetic equator is consistent with particle-wave interactions. The chorus emissions are most intense on the morning side as previously reported. At frequencies from approx. 10-50 kHz VLF transmitters dominate the spectrum. The maximum intensity of the VLF transmitters is in the late evening or early morning with enhancements all along L shells from 1.8 to 3.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...