ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ESPI  (1)
  • 2000-2004  (1)
Collection
Publisher
Years
  • 2000-2004  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 40 (2000), S. 129-137 
    ISSN: 1741-2765
    Keywords: stress measurement ; stress relief ; ESPI ; interferometry ; inversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Speckle interferometric fringe patterns record stress-relief displacements induced by the drilling of blind-holes into prestressed objects. The quantitative determination of residual stress state from such stress patterns is difficult because of the ambiguity in the order of the observed fringes. The plane stress magnitudes are provided directly from selected fringe positions using a stochastic, iterative least squares minimization approach. The inversion requires prior knowledge of the experimental geometry and an appropriate uniaxial stress-relief displacement basis function derived from three-dimensional finite element calculations. Superpositioning of the rotated and scaled displacement basis functions allows the stress-relief relaxation for any biaxial state of stress to be determined. In this paper, fringe patterns were forward modeled from a large ensemble of calculated biaxial stress-relief displacement fields. Inversion of these noise-free fringe patterns reproduced the biaxial stresses with negligible error. Analysis of more realistic fringe patterns that include speckle noise gave stress magnitude errors that diminished rapidly with the number of selected points to better than 3 percent for 100 points. Sensitivity of the optical method is influenced by a number of factors, but the ensemble of model fringe patterns studied indicates that the stress magnitudes (nomalized with respect to the material's Young's modulus) from 3×10−4 to 10−2 can accurately be determined with visible laser radiation. The method is amenable to automation and can easily be extended to study near surface gradients in the residual stresses or applied to other optical recording techniques such as moiré and phase-shifting interferometry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...