ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (1)
  • Atomic and molecular structure and dynamics
  • 2000-2004  (1)
  • 1
    Publication Date: 2019-07-13
    Description: We present a study of the [C II] 157.74 micron fine-structure line in a sample of 15 ultraluminous infrared (IR) galaxies (IR luminosity L(sub IR greater than or equal to 10(exp 12)L.; ULIRGs) using the Long Wavelength Spectrometer (LWS) on the Infrared Space Observatory (ISO). We confirm the observed order of magnitude deficit (compared to normal and starburst galaxies) in the strength of the [C II] line relative to the far-infrared (FIR) dust continuum emission found in our initial report, but here with a sample that is twice as large. This result suggests that the deficit is a general phenomenon affecting 4 out of 5 ULIRGs. We present an analysis using observations of generally acknowledged photodissociation region (PDR) tracers ([C II], [OI] 63 and 145 micron, and FIR continuum emission), which suggests that a high ultraviolet flux G(sub 0) incident on a moderate density n PDR could explain the deficit. However, comparisons with other ULIRG observations, including CO (1-0), [C I] (1-0), and 6.2 micron polycyclic aromatic hydrocarbon (PAH) emission, suggest that high G(sub 0)/n PDRs alone cannot produce a self-consistent solution that is compatible with all of the observations. We propose that non-PDR contributions to the FIR continuum can explain the apparent [C II] deficiency. Here, unusually high G(sub 0) and/ or n physical conditions in ULIRGs as compared to those in normal and starburst galaxies are not required to explain the [C II] deficit. Dust-bounded photoionization regions, which generate much of the FIR emission but do not contribute significant [C II] emission, offer one possible physical origin for this additional non-PDR component. Such environments may also contribute to the observed suppression of FIR fine-structure emission from ionized gas and PAHs, as well as the warmer FIR colors found in ULIRGs. The implications for observations at higher redshifts are also revisited.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 594; Pr 1; 758-775
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...