ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-04-10
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 82 (2000), S. 383-390 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract.  Efficient algorithms for image motion computation are important for computer vision applications and the modelling of biological vision systems. Intensity-based image motion computation proceeds in two stages: the convolution of linear spatiotemporal filter kernels with the image sequence, followed by the non-linear combination of the filter outputs. If the spatiotemporal extent of the filter kernels is large, then the convolution stage can be very intensive computationally. One effective means of reducing the storage required and computation involved in implementing the temporal convolutions is the introduction of recursive filtering. Non-recursive methods require the number of frames of the image sequence stored at any given time to be equal to the temporal extent of the slowest temporal filter. In contrast, recursive methods encode recent stimulus history implicitly in the values of a small number of variables updated through a series of feedback equations. Recursive filtering reduces the number of values stored in memory during convolution and the number of mathematical operations involved in computing the filters' outputs. This paper extends previous recursive implementations of gradient- and correlation-based motion analysis algorithms [Fleet DJ, Langley K (1995) IEEE PAMI 17: 61–67; Clifford CWG, Ibbotson MR, Langley K (1997) Vis Neurosci 14: 741–749], describing a recursive implementation of causal band-pass temporal filters suitable for use in energy- and phase-based algorithms for image motion computation. It is shown that the filters' temporal frequency tuning curves fit psychophysical estimates of the temporal properties of human visual filters [Hess RF, Snowden RJ (1992) Vision Res 32: 47–60].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...