ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-11-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-08-31
    Description: We examine the circulation of heavy ions of planetary origin within Mercury’s magnetosphere. Using single particle trajectory calculations, we focus on the dynamics of sodium ions, one of the main species that are ejected from the planet’s surface. The numerical simulations reveal a significant population in the near-Mercury environment in the nightside sector, with energetic (several keV) Na + densities that reach several tenths cm-3 at planetary perihelion. At aphelion, a lesser (by about one order of magnitude) density contribution is obtained, due to weaker photon flux and solar wind flux. The numerical simulations also display several features of interest that follow from the small spatial scales of Mercury’s magnetosphere. First, in contrast to the situation prevailing at Earth, ions in the magnetospheric lobes are found to be relatively energetic (a few hundreds of eV), despite the low-energy character of the exospheric source. This results from enhanced centrifugal acceleration during E × B transport over the polar cap. Second, the large Larmor radii in the mid-tail result in the loss of most Na + into the dusk flank at radial distances greater than a few planetary radii. Because gyroradii are comparable to, or larger than, the magnetic field variation length scale, the Na + motion is also found to be non-adiabatic throughout most of Mercury’s equatorial magnetosphere, leading to chaotic scattering into the loss cone or meandering (Speiser-type) motion in the near-tail. As a direct consequence, a localized region of energetic Na + precipitation develops at the planet’s surface. In this region which extends over a wide range of longitudes at mid-latitudes ( ~ 30°–40°), one may expect additional sputtering of planetary material.Key words. Magnetospheric physics (planetary magnetospheres) – Space plasma physics (charged particle motion and acceleration; numerical simulation studies)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-22
    Description: In this paper, we present in-situ observations of processes occurring at the magnetopause and vicinity, including surface waves, oscillatory magnetospheric field lines, and flux transfer events, and coordinated observations at geosynchronous orbit by the GOES spacecraft, and on the ground by CANOPUS and 210° Magnetic Meridian (210MM) magnetometer arrays. On 7 February 2002, during a high-speed solar wind stream, the Polar spacecraft was skimming the magnetopause in a post-noon meridian plane for ~3h. During this interval, it made two short excursions and a few partial crossings into the magnetosheath and observed quasi-periodic cold ion bursts in the region adjacent to the magnetopause current layer. The multiple magnetopause crossings, as well as the velocity of the cold ion bursts, indicate that the magnetopause was oscillating with an ~6-min period. Simultaneous observations of Pc5 waves at geosynchronous orbit by the GOES spacecraft and on the ground by the CANOPUS magnetometer array reveal that these magnetospheric pulsations were forced oscillations of magnetic field lines directly driven by the magnetopause oscillations. The magnetospheric pulsations occurred only in a limited longitudinal region in the post-noon dayside sector, and were not a global phenomenon, as one would expect for global field line resonance. Thus, the magnetopause oscillations at the source were also limited to a localized region spanning ~4h in local time. These observations suggest that it is unlikely that the Kelvin-Helmholz instability and/or fluctuations in the solar wind dynamic pressure were the direct driving mechanisms for the observed boundary oscillations. Instead, the likely mechanism for the localized boundary oscillations was pulsed reconnection at the magnetopause occurring along the X-line extending over the same 4-h region. The Pc5 band pressure fluctuations commonly seen in high-speed solar wind streams may modulate the reconnection rate as an indirect cause of the observed Pc5 pulsations. During the same interval, two flux transfer events were also observed in the magnetosphere near the oscillating magnetopause. Their ground signatures were identified in the CANOPUS data. The time delays of the FTE signatures from the Polar spacecraft to the ground stations enable us to estimate that the longitudinal extent of the reconnection X-line at the magnetopause was ~43° or ~5.2 RE. The coordinated in-situ and ground-based observations suggest that FTEs are produced by transient reconnection taking place along a single extended X-line at the magnetopause, as suggested in the models by Scholer (1988) and Southwood et al. (1988). The observations from this study suggest that the reconnection occurred in two different forms simultaneously in the same general region at the dayside magnetopause: 1) continuous reconnection with a pulsed reconnection rate, and 2) transient reconnection as flux transfer events. Key words. Magnetospheric physics (Magnetopause, cusp and boundary layers; Magnetosphere-ionosphere interactions; MHD waves and instabilities)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-06-30
    Description: Due to the velocity shear imposed by the solar wind flowing around the magnetosphere, the magnetopause flanks are preferred regions for the development of a Kelvin-Helmholtz instability. Since its efficiency for momentum transfer across the magnetopause has already been established, we investigate its efficiency for mass transfer. Using nonresistive magnetohydrodynamic simulations to describe the magnetic field shape in the instability region, we use test-particle calculations to analyse particle dynamics. We show that the magnetopause thickness and the instability wave-length are too large to lead to nonadiabatic motion of thermal electrons from the magnetosphere. On the other hand, the large mass of H+, He+ and O+ ions leads to such nonadiabatic motion and we thus propose the Kelvin-Helmholtz instability as a mechanism for either magnetospheric ion leakage into the magnetosheath or solar wind ion entry in the magnetosphere. Test-particle calculations are performed in a dimensionless way to discuss the case of each type of ion. The crossing rate is of the order of 10%. This rate is anti-correlated with shear velocity and instability wavelength. It increases with the magnetic shear. The crossing regions at the magnetopause are narrow and localized in the vicinity of the instability wave front. As a Kelvin-Helmholtz instability allows for mass transfer through the magnetopause without any resistivity, we propose it as an alternate process to reconnection for mass transfer through magnetic boundaries. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; MHD waves and instabilities) – Space plasma physics (numerical simulation studies)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-01-01
    Description: We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c) distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a) type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b) and (c) ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...