ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (114)
  • American Meteorological Society
  • American Society of Hematology
  • Geological Society of America (GSA)
  • Informa UK Limited
  • 1
    Publication Date: 2004-11-16
    Description: Postmenopausal women have an increased risk of cardiovascular disease, and heart disease is the leading cause of death in postmenopausal American women. Conventional hormone replacement therapy has been shown to result in an increase in thrombotic events in large prospective clinical trials including HERS I, and the recently halted Women’s Health Initiative. One possible mechanism for this observed increase is the unfavorable net effects of conjugated equine estrogens and medroxyprogesterone acetate on the hemostatic balance and inflammatory factors. An estimated 50 million American women are peri or postmenopausal and clinical therapies for menopausal symptoms remain a significant challenge in light of the known thrombotic risks. In this prospective blinded study, we examined the short-term effect of topical progesterone cream on menopausal symptom relief in 30 healthy postmenopausal women. Potential adverse effects of topical progesterone on hemostatic and inflammatory factors and cortisol levels were also examined. Subjects were randomized to first receive either 20 mg of topical progesterone cream or placebo cream for 4 weeks. Following a subsequent 4-week washout period, subjects were crossed over to either placebo cream or active drug for an additional 4-week period. In each case, progesterone and cortisol levels were monitored by salivary sampling. Baseline values, 4-week follow-up values and end-of-study values were also obtained for the Greene Climacteric Scale, total factor VII:C, factor VIIa, factor V, fibrinogen, antithrombin, PAI-1, CRP, TNFα, and IL-6. For subjects receiving 20 mg of topical progesterone cream for 4 weeks, Greene Climacteric Scale scores were consistently and significantly improved (decreased) over baseline, demonstrating significant relief from menopausal symptoms. In addition, in a subpopulation of hypercortisolemic women, topical progesterone was associated with a favorable decrease in nocturnal cortisol. Surprisingly, and in sharp contrast to earlier studies with conventional hormone replacement therapy, topical progesterone had no effect on any of the hemostatic components examined: total factor VII:C, factor VIIa, factor V, fibrinogen, antithrombin, and PAI-1 levels were all unchanged. Levels of CRP, TNFα and IL-6 also remained unchanged. From this study we conclude that administration of topical progesterone cream at a daily dose of 20 mg significantly relieves menopausal symptoms in postmenopausal women without adversely altering prothrombotic potential. Since the thrombotic complications that are typically observed with conventional hormone replacement therapy do not seem to occur with topical progesterone, this treatment should be seriously considered as an effective and safe alternative clinical therapy for women suffering from menopausal symptoms.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publication Date: 2024-05-29
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-13
    Description: Fishers' knowledge research (FKR) aims to enhance the use of experiential knowledge of fish harvesters in fisheries research, assessment, and management. Fishery participants are able to provide unique knowledge, and that knowledge forms an important part of "best available information" for fisheries science and management. Fishers' knowledge includes, but is much greater than, basic biological fishery information. It includes ecological, economic, social, and institutional knowledge, as well as experience and critical analysis of experiential knowledge. We suggest that FKR, which may in the past have been defined quite narrowly, be defined more broadly to include both fishery observations and fishers "experiential knowledge" provided across a spectrum of arrangements of fisher participation. FKR is part of the new and different information required in evolving "ecosystem-based" and "integrated" management approaches. FKR is a necessary element in the integration of ecological, economic, social, and institutional considerations of future management. Fishers' knowledge may be added to traditional assessment with appropriate analysis and explicit recognition of the intended use of the information, but fishers' knowledge is best implemented in a participatory process designed to receive and use it. Co-generation of knowledge in appropriately designed processes facilitates development and use of fishers' knowledge and facilitates the participation of fishers in assessment and management, and is suggested as best practice in improved fisheries governance.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: 〈span〉Mantle lithosphere heterogeneities are well documented, are ubiquitous, and have often been thought to control lithosphere-scale deformation. Here, we explore the influence of deep scarring in crustal deformation in three dimensions by considering the Ouachita orogeny in the southeastern United States, an example of a continental collision where mantle structure is present but not previously linked to the regional crustal tectonics. We present state-of-the-art continental compressional models in the presence of inherited three-dimensional lithospheric structure. Our models find that the surface expression of the Ouachita orogeny is localized by, and projected from, the controlling mantle scarring, in keeping with geological and geophysical observations. We are able to produce a large-scale arcuate orogeny with associated basin development appropriate to the Ouachita orogeny, alongside smaller-scale crustal faulting related to the region. This study offers a new and alternative hypothesis to the tectonic history of the Ouachita orogeny, with previous research having focused exclusively on crustal structures. The findings have broad implications, demonstrating the important potential role of the mantle lithosphere in controlling crustal dynamics and highlighting the requirement to consider deeper structure and processes when interpreting tectonic evolution of lithospheric-scale deformation.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉We propose a new Bayesian method to reveal the 〈span〉Vs〈/span〉 structure of the near surface of the earth using spatial autocorrelation (SPAC) functions and apply this new method to synthetic, broadband, and geophone datasets. The principle of SPAC is introduced, and an implementation of the Bayesian Monte Carlo inversion (BMCI) for modeling SPAC coherency functions is described. To demonstrate its effectiveness, BMCI is applied to synthetic tests, data from 14 SPAC array sites in the Salt Lake Valley (SLV), Utah, and two arrays (one broadband and one geophone) located in south central Utah. The 〈span〉Vs〈/span〉 models derived from previous SPAC analysis of the 14 SLV sites differ by 10 per cent at most from those determined by BMCI and lie within uncertainties determined for the BMCI models. These agreements demonstrate the effectiveness of the BMCI method. The synthetic tests and applications to the SLV SPAC data show BMCI has great potential to resolve 〈span〉Vs〈/span〉 structure down to at least 400 m. To achieve resolution for deeper 〈span〉Vs〈/span〉 structure, longer duration deployments, wider array apertures, and additional seismometers or geophones can be employed. Additionally, when the target frequencies are greater than 0.1 Hz, there is no apparent disadvantage in using geophone data for BMCI compared to broadband data. Most significantly, BMCI places a quantifiable constraint on the uncertainties of the 〈span〉Vs〈/span〉 models as well as 〈span〉Vs30〈/span〉.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-30
    Description: Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (~82°–83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (~35–36 km) and comparable velocity–depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ~24–30 km in the Eurekan fold and thrust belt (~79.7°–80.6°N) to ~16–20 km in the Hazen Stable Block (HSB; ~80.6°–81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (~48 km) at ~79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1–4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-02
    Description: Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ~7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ~5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ~6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ~5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Recently an ambitious experiment combining deep seismic surveys from near-vertical and wide-angle acquisition methods was carried out in Brazil. The seismic lines are essentially coincident and crossed the Parnaíba Basin from west to east near latitude 5°S. Here, the wide-angle reflection and refraction (WARR) and deep seismic reflection (DSR) results, which were previously interpreted independently, are compared by directly correlating WARR interfaces converted to TWTT with the major reflective horizons identified in the zero-offset image and by considering coincident reflectivity patterns displayed in both data sets. This integrated WARR and DSR analysis allowed a spatial association of the apparently acoustically featureless crust imaged in the DSR profile to the high reflectivity observed in the WARR data. Numerical tests and elastic modelling show that variations of the elastic properties of the crust, particularly as they are characterized by low 〈span〉Vp〈/span〉 and 〈span〉Vs〈/span〉 contrasts with a possible increase of the 〈span〉Vp〈/span〉/〈span〉Vs〈/span〉 ratio, can only weakly explain the observed reflectivity patterns but that fine-scale lithological heterogeneity within the crust is capable of replicating the observed contrasting seismic responses. The segment of the Parnaíba Basin crust that is characterized by fine-scale lithological heterogeneity lies directly above a mafic crustal underplate defined by the WARR model and was named as the Grajaú domain on the basis of WARR-derived velocity model. The applied methodologies allow added value to be taken from the independent seismic data sets and provide new information about crustal structure that may have important implications for overlying intracontinental basin evolution.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...