ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1561
    Keywords: Anopheles gambiae ; behavior ; electroantennogram ; human sweat ; identification ; malaria mosquito ; indole ; geranyl acetone ; 6-methyl-5hepten-2-one ; 1-dodecanol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The behavioral and electroantennogram (EAG) responses of female Anopheles gambiae mosquitoes to pooled samples of freshly collected human sweat and human sweat incubated for 42–52 hr were tested. No behavioral or EAG response was obtained to pooled fresh sweat samples, whereas incubated pooled sweat samples produced a behavioral as well as an EAG response. GC-MS analysis of the headspace composition of the fresh sweat revealed ethanol (15.1% of the total amount of volatiles trapped), acetic acid (10.9%), and 3-hydroxy-2-butanone (9.5%) as the most abundant compounds; a wide range of ethyl esters was present as well. None of the ethyl esters was detected in the headspace collections from incubated sweat, while the relative amounts of ethanol, acetic acid, and 3-hydroxy-2-butanone were strongly reduced. In the latter collections, indole (27.9%), 1-dodecanol (22.4%), and 3-methyl-1-butanol (10%) were present in high amounts, while they were absent or present in only minor amounts in the headspace collections from fresh sweat. Geranyl acetone (6%) and 6-methyl-5-hepten-2-one (1.9%) were relatively abundant in both the fresh and incubated headspace samples. EAG responses were observed in response to indole, 6-methyl-5-hepten-2-one, and geranyl acetone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 28 (2000), S. 160-167 
    ISSN: 1573-9686
    Keywords: Respiratory support ; Artificial lung ; Intravenous oxygenation ; Hollow fibers ; Gas transfer ; Gas exchange ; IMO
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Intravascular oxygenation and carbon dioxide removal remains a potentially attractive means for respiratory support in patients with acute or chronic respiratory failure. Our group has been developing an intravascular hollow fiber artificial lung that uses a pulsating balloon located within the fiber bundle to augment gas transfer. We previously reported on a simple compartmental model for simulating O2 exchange in pulsating intravascular artificial lungs. In this study we evaluate the O2 exchange model with gas exchange and PO2 measurements performed on an idealized intravascular artificial lung (IIVAL) tested in a water perfusion loop. The IIVAL has well-defined bundle geometry and can be operated in balloon pulsation mode, or a steady perfusion mode for determining the mass transfer correlation required by the model. The O2 exchange rates and compartmental O2 tensions measured with balloon pulsation in the IIVAL are within 10% of model predictions for flow and pulsation conditions relevant to intravascular oxygenation. The experiments confirmed that a significant buildup of PO2 occurs within the fiber bundle, which reduces the O2 exchange rate. The agreement between experiments and predictions suggests that the model captures the cardinal processes dictating gas transfer in pulsating intravascular artificial lungs. © 2000 Biomedical Engineering Society. PAC00: 8780-y, 8710+e
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...