ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 54 (2003), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: It seems possible that soil potential nitrification rates (PNRs) are determined by the size and structure of both the eubacterial and nitrifier populations. We have examined this possibility by comparing the structure of the eubacterial community with the subcomponents and dynamics of the ammonium-oxidizer population, within and between three arable fields. PNRs were significantly different between the three fields and also showed significantly different temporal patterns within each field. The use of eubacterial primers in polymerase chain reaction–denaturing gel gradient electrophoresis (PCR–DGGE) analyses indicated that the bacterial community structure in each field was significantly different from that in the others, and that the bacterial components of these communities changed with time through the season. In contrast, PCR–DGGE analyses specific to ammonium oxidizers suggested that the populations in all three fields were similar in types and did not vary with time. Competitive PCR suggested that there were large and biologically significant differences in the size of the nitrifier population between the three fields, but that within each individual field populations did not change over time. Sequencing identified the ammonium oxidizers in the Nitrosospira spp. cluster. There was also no relation between the size of the nitrifier populations and PNR. Functional expression, as PNR, apparently responded to changes in eubacterial community structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The implications for the agricultural productivity of the UK upland sheep systems of reducing nitrogen fertilizer application and lowering stocking rates on perennial ryegrass/white clover swards were studied over 4 years at a site in Wales. The system involved grazing ewes and lambs from birth to weaning on swards maintained at a constant height with surplus herbage made into silage, thereafter ewes and weaned lambs grazed on separate areas until the onset of winter with adjustments to the size of the areas grazed and utilizing surplus pasture areas for silage. Four stocking rates [SR 18, 15, 12 and 9 ewes ha−1 on the total area (grazed and ensiled)] and two levels of annual nitrogen fertilizer application (N 200 and 50 kg ha−1) were studied in five treatments (N200/SR18, N200/SR15, N50/SR15, N50/SR12 and N50/SR9). Average white clover content was negatively correlated with the level of annual nitrogen fertilizer application. White clover content of the swards was maintained over the duration of the experiment with an increasing proportion of clover in the swards receiving 50 kg N ha−1. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain from birth to weaning in all treatments but fewer lambs reached the slaughter live weight by September at the higher stocking rates and with the lower level of fertilizer application. Three of the five treatments provided adequate winter fodder as silage (N200/SR15, N50/SR12 and N50/SR9). Because of the failure to make adequate winter fodder and the failure of white clover to fully compensate for reduction in nitrogen fertilizer application, it is concluded that nitrogen fertilizer can only be reduced on upland sheep pastures if accompanied by reduced stocking rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The implications for UK upland sheep systems of reducing nitrogen fertilizer application to perennial ryegrass/white clover swards were studied over 3 years. Sward height (3·5–5·5 cm) was controlled for ewes with lambs until weaning using surplus pasture areas for silage; thereafter, ewes and weaned lambs were grazed on separate areas, and sward height was controlled by adjusting the size of the areas grazed and using surplus pasture areas for silage if necessary. Combinations from three stocking rates [10, 6 and 4 ewes ha−1 on the total area (grazed and ensiled)] and four nitrogen fertilizer levels (150, 100, 50 and 0 kg ha−1) provided six treatments that were replicated three times. Average white clover content was negatively correlated with level of nitrogen fertilizer. The proportion of white clover in the swards increased over the duration of the experiment. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain on all treatments. All treatments provided adequate winter fodder as silage. It is concluded that the application of nitrogen fertilizer can be reduced or removed from upland sheep pastures without compromising individual animal performance provided that white clover content and sward height are maintained. Resting pastures from grazing by changing ensiled and grazed areas from year to year sustained white clover content over a 3-year period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 25 (2002), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Long-term exposure of plants to elevated [CO2] leads to a number of growth and physiological effects, many of which are interpreted in the context of ameliorating the negative impacts of drought. However, despite considerable study, a clear picture in terms of the influence of elevated [CO2] on plant water relations and the role that these effects play in determining the response of plants to elevated [CO2] under water-limited conditions has been slow to emerge. In this paper, four areas of research are examined that represent critical, yet uncertain, themes related to the response of plants to elevated [CO2] and drought. These include (1) fine-root proliferation and implications for whole-plant water uptake; (2) enhanced water-use efficiency and consequences for drought tolerance; (3) reductions in stomatal conductance and impacts on leaf water potential; and (4) solute accumulation, osmotic adjustment and dehydration tolerance of leaves. A survey of the literature indicates that the growth of plants at elevated [CO2] can lead to conditions whereby plants maintain higher (less negative) leaf water potentials. The mechanisms that contribute to this effect are not fully known, although CO2-induced reductions in stomatal conductance, increases in whole-plant hydraulic conductance and osmotic adjustment may be important. Less understood are the interactive effects of elevated [CO2] and drought on fine-root production and water-use efficiency, and the contribution of these processes to plant growth in water-limited environments. Increases in water-use efficiency and reductions in water use can contribute to enhanced soil water content under elevated [CO2]. Herbaceous crops and grasslands are most responsive in this regard. The conservation of soil water at elevated [CO2] in other systems has been less studied, but in terms of maintaining growth or carbon gain during drought, the benefits of CO2-induced improvements in soil water content appear relatively minor. Nonetheless, because even small effects of elevated [CO2] on plant and soil water relations can have important implications for ecosystems, we conclude that this area of research deserves continued investigation. Future studies that focus on cellular mechanisms of plant response to elevated [CO2] and drought are needed, as are whole-plant investigations that emphasize the integration of processes throughout the soil–plant–atmosphere continuum. We suggest that the hydraulic principles that govern water transport provide an integrating framework that would allow CO2-induced changes in stomatal conductance, leaf water potential, root growth and other processes to be uniquely evaluated within the context of whole-plant hydraulic conductance and water transport efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In citrus, the majority of fine roots are distributed near the soil surface – a region where conditions are frequently dry and temperatures fluctuate considerably. To develop a better understanding of the relationship between changes in soil conditions and a plant’s below-ground respiratory costs, the effects of temperature and soil drying on citrus root respiration were quantified in controlled greenhouse experiments. Chambers designed for measuring the respiration of individual roots were used. Under moist soil conditions, root respiration in citrus increased exponentially with changes in soil temperature (Q10 = 1·8–2·0), provided that the changes in temperature were short-term. However, when temperatures were held constant, root respiration did not increase exponentially with increasing temperatures. Instead, the roots acclimated to controlled temperatures above 23 °C, thereby reducing their metabolism in warmer soils. Under drying soil conditions, root respiration decreased gradually beginning at 6% soil water content and reached a minimum at 〈2% soil water content in sandy soil. A model was constructed from greenhouse data to predict diurnal patterns of fine root respiration based on temperature and soil water content. The model was then validated in the field using data obtained by CO2 trapping on root systems of mature citrus trees. The trees were grown at a site where the soil temperature and water content were manipulated. Respiration predicted by the model was in general agreement with observed rates, which indicates the model may be used to estimate entire root system respiration for citrus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The mid-day responses of wheat ear CO2 and water vapour exchange to full-season CO2 enrichment were investigated using a Free-Air CO2 Enrichment (FACE) apparatus. Spring wheat [Triticum aestivum (L). cv. Yecora Rojo] was grown in two experiments under ambient and elevated atmospheric CO2 (Ca) concentrations (approximately 370 μmol mol−1 and 550 μmol mol−1, respectively) combined first with two irrigation (Irr) schemes (Wet: 100% and Dry: 50% replacement of evapotranspiration) and then with two levels of nitrogen (N) fertilization (High: 350, Low: 70 kg ha−1 N). Blowers were used for Ca enrichment. Ambient Ca plots were exposed to blower induced winds as well the Ca× N but not in the Ca× Irr experiment. The net photosynthesis for the ears was increased by 58% and stomatal conductance (gs) was decreased by 26% due to elevated Ca under ample water and N supply when blowers were applied to both Ca treatments. The use of blowers in the Ca-enriched plots only during the Ca× Irr experiment (blower effect) and Low N supply restricted the enhancement of net photosynthesis of the ear due to higher Ca. In the latter case, the increase of net photosynthesis of the ear amounted to 26%. The decrease in gs caused by higher Ca was not affected by the blower effect and N treatment. The mid-day enhancement of net photosynthesis due to elevated Ca was higher for ears than for flag leaves and this effect was most pronounced under ample water and N supply. The contribution of ears to grain filling is therefore likely to increase in higher Ca environments in the future. In the comparison between Wet and Dry, the higher Ca did not alter the response of net photosynthesis of the ear and gs to Irr. However, Ca enrichment increased the drought tolerance of net photosynthesis of the glume and delayed the increase of the awn portion of net photosynthesis of the ear during drought. Therefore, the role of awns for maintaining high net photosynthesis of the ear under drought may decrease when Ca increases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A strong relationship between hydraulic supply of water to leaves and maximum photosynthetic capacity was found in a group of seven conifers and 16 angiosperm species, including two vessel-less taxa, from similar rainforest communities in New Caledonia and Tasmania (Australia). Stem hydraulic supply was expressed as the hydraulic conductivity of branches in terms of leaf area supplied (KL) and leaf photosynthetic capacity was measured as the mean quantum yield of PSII (ØPSII) in leaves exposed to full sun, as determined by chlorophyll fluorescence analysis. A single, highly significant linear regression (r2= 0·74) described the relationship between hydraulic conductivity and quantum yield in all species. This suggests that the maximum photosynthetic rate of leaves is constrained by their vascular supply. In both rainforest locations, the KL of conifer wood overlapped broadly with that of associated vessel-bearing and vessel-less angiosperms indicating a degree of hydraulic convergence in these forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The ability of the root system architecture to respond to nutrient availability is a key adaptative behaviour allowing plants to cope with environmental conditions. On the basis of single time point comparisons, the response to phosphate deprivation was previously shown to involve both the primary and lateral roots of Arabidopsis. In this work, the temporal pattern of Arabidopsis root responses to phosphate starvation was investigated. Daily scanning of roots showed that changes in architecture were largely due to the alterations of time-based growth parameters, namely a decrease in the elongation rate of the primary root opposed to an increase in the elongation rate of lateral roots and a decrease in the number of initiated lateral roots. In addition, another identified response was a decrease in the proportion of lateral roots showing early growth arrest. All these changes occurred within a short period of approximately 3 d. In addition, the root morphology comparison with the auxin-resistant mutant axr4, the auxin-treatment of phosphate-starved plants and a limited transcriptome analysis supported the conclusion that auxin signalling was involved in the adaptive response of the root system architecture to phosphate deprivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Diurnal patterns of hydraulic conductance of the leaf lamina (Kleaf) were monitored in a field-grown tropical tree species in an attempt to ascertain whether the dynamics of stomatal conductance (gs) and CO2 uptake (Aleaf) were associated with short-term changes in Kleaf. On days of high evaporative demand mid-day depression of Kleaf to between 40 and 50% of pre-dawn values was followed by a rapid recovery after 1500 h. Leaf water potential during the recovery stage was less than −1 MPa implying a refilling mechanism, or that loss of Kleaf was not linked to cavitation. Laboratory measurement of the response of Kleaf to Ψleaf confirmed that leaves in the field were operating at water potentials within the depressed region of the leaf ‘vulnerability curve’. Diurnal courses of Kleaf and Ψleaf predicted from measured transpiration, xylem water potential and the Kleaf vulnerability function, yielded good agreement with observed trends in both leaf parameters. Close correlation between depression of Kleaf, gs and Aleaf suggests that xylem dysfunction in the leaf may lead to mid-day depression of gas exchange in this species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Septarian concretions occur at several horizons within the Oxford Clay Formation, a marine mudstone containing pristine aragonite and immature biomarker molecules. They record the passage of at least four generations of pore fluids, the first of marine origin and the last still present in cavities. Concretion bodies formed, cracked, and calcite and pyrite precipitated in and around the cracks within the sulphate reduction zone, as demonstrated by C, O, S and Sr isotopic composition (Pore fluid 1). Before major compaction, sandstone dykes were intruded locally, and baryte precipitated, followed by coarse calcite cements with isotopically light oxygen and radiogenic strontium, indicating the introduction of meteoric-derived water (Pore fluid 2). Later, coarse celestine within concretions has distinct sulphur-isotopic composition and requires a further, geographically restricted, water source (Pore fluid 3). Celestine-bearing concretions contain water in tight cavities whose isotopic composition is close to that of modern precipitation. Its chemistry shows that it is equilibrating with pre-existing minerals implying a relatively recent origin (Pore fluid 4). The mineralogy of the Oxford Clay concretions shows that complex results can follow from a simple burial and uplift history, and that multiple generations of pore fluids can pass through a low-permeability clay.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...