ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words: Gustation — Signal transduction — 8OH-DPAT — TFMPP — Piperazine — 5HT1A receptor  (1)
  • Key words Rice  (1)
  • Springer  (2)
  • 2000-2004  (2)
  • 1950-1954
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 100 (2000), S. 280-284 
    ISSN: 1432-2242
    Keywords: Key words Rice ; Paste viscosity characteristics ; Rapid Visco Analyser (RVA) ; Quantitative trait locus (QTL) ; Doubled haploid (DH) population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  In order to understand the genetic basis of the paste viscosity characteristics (RVA profile, which is tested on the Rapid Visco Analyser) of the rice grain, we mapped QTLs for RVA profile parameters using a DH population derived from a cross between an indica variety, Zai-Ye-Qing 8 (ZYQ8), and a japonica variety, Jing-Xi 17 (JX17). Evidence of genotype-by-environment interaction was found by comparing the mapped QTLs between two locations, Hainan (HN) and Hangzhou (HZ). A total of 20 QTLs for six parameters of the RVA profiles were identified at least one location. Only the waxy locus (wx) located on chromosome 6 was detected significantly at both environments for five traits, i.e. hot paste viscosity (HPV), cool paste viscosity (CPV), breakdown viscosity (BDV), consistency viscosity (CSV) and setback viscosity (SBV). This locus explained 19.5%–63.7% of the total variations at both environments, suggesting that the RVA profiles were mainly controlled by the wx gene. HPV, CPV, BDV, CSV and SBV were also controlled by other QTLs whose effects on the respective parameter were detected only in one environment, while for the peak viscosity (PKV), only 2 QTLs, 1 at HN,the other at HZ, were identified. These results indicate that RVA profiles are obviously affected by environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 173 (2000), S. 127-138 
    ISSN: 1432-1424
    Keywords: Key words: Gustation — Signal transduction — 8OH-DPAT — TFMPP — Piperazine — 5HT1A receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Recently we reported that rat taste receptor cells respond to the neurotransmitter serotonin with an inhibition of a calcium-activated potassium current [17]. In the present study, this observation is confirmed and extended by studying the effects of an array of serotonergic agonists on membrane properties, calcium-activated potassium current, and voltage-dependent sodium current in taste receptor cells using the patch-clamp recording technique in the whole-cell configuration. Serotonergic inhibition of calcium-activated potassium current was mimicked by the agonists N-(3-trifluoromethylphenyl)piperazine and by (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene. Both produced reversible inhibition of K Ca as well as significantly increasing the input resistance of the cell. The agonists 1-(1-naphthyl)piperazine and buspirone (both serotonin receptor 1A agonists) were similarly effective in reducing K Ca . Outward current was unaffected by application of phenylbiguanide, a serotonin receptor 3 agonist, though current was affected by subsequent application of (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene. Two agonists—N-(3-trifluoromethylphenyl)piperazine and (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene—were also tested on voltage-dependent sodium currents; both were effective and reversible in reducing its magnitude at a variety of applied potentials. These data are consistent with the notion that serotonin effects in rat taste receptor cells are mediated by serotonin 1A receptors, though other receptor subtypes may be additionally expressed. Serotonin may affect the taste cell electrical properties during active stimulation in a paracrine fashion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...