ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymer research 7 (2000), S. 257-266 
    ISSN: 1572-8935
    Keywords: Poly(ether sulfone) ; Epoxy resin ; Physical aging ; DSC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The physical aging process of 4-4′-diaminodiphenylsulfone (DDS) cured diglycidyl ether bisphenol-A (DGEBA) blended with various molecular weights of poly(ether sulfone) (PES; Mn = 28,600, 10,600, and 6,137) was studied by DSC. For DGEBA/DDS system blended with a low MW PES-3 (Mn = 6,137), no phase separation of the polymer blend and only one enthalpic relaxation process due to physical aging was observed. Since the high MW PES-1 (Mn = 28,600) had a Tg close to that of fully cured DGEBA/DDS, the fully cured DGEBA/DDS/PES-1 blend had a broader glass transition than a neat DGEBA/DDS system. However, the DSC results showed two enthalpic relaxation processes due to the physical aging of PES-rich and cured epoxy-rich phases as the material was aged at 155 °C (30 °C below Tg). Since the Tgs of PES-1-rich and epoxy-rich phases overlapped with each other, the enthalpic relaxation processes corresponding to each phase coupled to each other in the earlier stage of physical aging. The medium MW PES-2 (Mn = 10,600) has a much lower Tg than that of fully cured DGEBA/DDS, two well separated Tgs were observed for the cured DGEBA/DDS/PES-2 blend, indicating the cured epoxy was immiscible with PES. Aging the polymer blend at 155 °C (24 °C below Tg1 of the PES-2-rich phase and 53 °C below Tg2 of the epoxy-rich phase) produced two well separated relaxation processes due to PES-2-rich and epoxy-rich phases. The experimental results suggested that aging the polymer blend at a suitable temperature would improve the phase separation between PES-1-rich and epoxy-rich phases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 100 (2000), S. 280-284 
    ISSN: 1432-2242
    Keywords: Key words Rice ; Paste viscosity characteristics ; Rapid Visco Analyser (RVA) ; Quantitative trait locus (QTL) ; Doubled haploid (DH) population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  In order to understand the genetic basis of the paste viscosity characteristics (RVA profile, which is tested on the Rapid Visco Analyser) of the rice grain, we mapped QTLs for RVA profile parameters using a DH population derived from a cross between an indica variety, Zai-Ye-Qing 8 (ZYQ8), and a japonica variety, Jing-Xi 17 (JX17). Evidence of genotype-by-environment interaction was found by comparing the mapped QTLs between two locations, Hainan (HN) and Hangzhou (HZ). A total of 20 QTLs for six parameters of the RVA profiles were identified at least one location. Only the waxy locus (wx) located on chromosome 6 was detected significantly at both environments for five traits, i.e. hot paste viscosity (HPV), cool paste viscosity (CPV), breakdown viscosity (BDV), consistency viscosity (CSV) and setback viscosity (SBV). This locus explained 19.5%–63.7% of the total variations at both environments, suggesting that the RVA profiles were mainly controlled by the wx gene. HPV, CPV, BDV, CSV and SBV were also controlled by other QTLs whose effects on the respective parameter were detected only in one environment, while for the peak viscosity (PKV), only 2 QTLs, 1 at HN,the other at HZ, were identified. These results indicate that RVA profiles are obviously affected by environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...