ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-12-03
    Description: N-linked protein glycosylation is the most abundant posttranslation modification of secretory proteins in eukaryotes. A wide range of functions are attributed to glycan structures covalently linked to asparagine residues within the asparagine-X-serine/threonine consensus sequence (Asn-Xaa-Ser/Thr). We found an N-linked glycosylation system in the bacterium Campylobacter jejuni and demonstrate that a functional N-linked glycosylation pathway could be transferred into Escherichia coli. Although the bacterial N-glycan differs structurally from its eukaryotic counterparts, the cloning of a universal N-linked glycosylation cassette in E. coli opens up the possibility of engineering permutations of recombinant glycan structures for research and industrial applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wacker, Michael -- Linton, Dennis -- Hitchen, Paul G -- Nita-Lazar, Mihai -- Haslam, Stuart M -- North, Simon J -- Panico, Maria -- Morris, Howard R -- Dell, Anne -- Wren, Brendan W -- Aebi, Markus -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1790-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, Zurich, CH-8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459590" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/isolation & purification/*metabolism ; Campylobacter jejuni/genetics/*metabolism ; Carbohydrate Conformation ; *Cloning, Molecular ; Conjugation, Genetic ; Consensus Sequence ; Escherichia coli/*genetics/metabolism ; *Escherichia coli Proteins ; Genes, Bacterial ; Genetic Complementation Test ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; Glycosyltransferases/genetics/metabolism ; Lipoproteins/genetics/isolation & purification/metabolism ; Mass Spectrometry ; Membrane Transport Proteins ; Models, Biological ; Mutation ; Polysaccharides, Bacterial/biosynthesis ; Recombinant Proteins/chemistry/isolation & purification ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-02-21
    Description: The association between obesity and diabetes supports an endocrine role for the adipocyte in maintaining glucose homeostasis. Here we report that mice lacking the adipocyte hormone resistin exhibit low blood glucose levels after fasting, due to reduced hepatic glucose production. This is partly mediated by activation of adenosine monophosphate-activated protein kinase and decreased expression of gluconeogenic enzymes in the liver. The data thus support a physiological function for resistin in the maintenance of blood glucose during fasting. Remarkably, lack of resistin diminishes the increase in post-fast blood glucose normally associated with increased weight, suggesting a role for resistin in mediating hyperglycemia associated with obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Ronadip R -- Rangwala, Shamina M -- Shapiro, Jennifer S -- Rich, A Sophie -- Rhoades, Ben -- Qi, Yong -- Wang, Juan -- Rajala, Michael W -- Pocai, Alessandro -- Scherer, Phillipp E -- Steppan, Claire M -- Ahima, Rexford S -- Obici, Silvana -- Rossetti, Luciano -- Lazar, Mitchell A -- NIH T32-GM008216/GM/NIGMS NIH HHS/ -- P01 DK49210/DK/NIDDK NIH HHS/ -- P30 DK19525/DK/NIDDK NIH HHS/ -- P60 DK20541/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1195-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Penn Diabetes Center, 611 CRB, 415 Curie Boulevard, Universityof Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976316" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Adipocytes/metabolism ; Animals ; Blood Glucose/*metabolism ; Body Weight ; Diet ; Dietary Fats/administration & dosage ; *Fasting ; Gene Targeting ; Gluconeogenesis ; Glucose Tolerance Test ; Glucose-6-Phosphatase/metabolism ; Homeostasis ; Hormones, Ectopic/administration & dosage/blood/genetics/*physiology ; Insulin/blood ; Liver/metabolism ; Male ; Mice ; Multienzyme Complexes/metabolism ; Obesity/metabolism ; Phosphoenolpyruvate Carboxykinase (GTP)/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/administration & dosage ; Resistin ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...