ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Annual Reviews  (2)
  • Wiley-Blackwell  (1)
  • 2000-2004  (2)
  • 1965-1969  (1)
  • 1950-1954
  • 1945-1949
  • 1930-1934
  • 1925-1929
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Nutrition 20 (2000), S. 699-722 
    ISSN: 0199-9885
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Research on human milk oligosaccharides (HMOs) has received much attention in recent years. However, it started about a century ago with the observation that oligosaccharides might be growth factors for a so-called bifidus flora in breast-fed infants and extends to the recent finding of cell adhesion molecules in human milk. The latter are involved in inflammatory events recognizing carbohydrate sequences that also can be found in human milk. The similarities between epithelial cell surface carbohydrates and oligosaccharides in human milk strengthen the idea that specific interactions of those oligosaccharides with pathogenic microorganisms do occur preventing the attachment of microbes to epithelial cells. HMOs may act as soluble receptors for different pathogens, thus increasing the resistance of breast-fed infants. However, we need to know more about the metabolism of oligosaccharides in the gastrointestinal tract. How far are oligosaccharides degraded by intestinal enzymes and does oligosaccharide processing (e.g. degradation, synthesis, and elongation of core structures) occur in intestinal epithelial cells? Further research on HMOs is certainly needed to increase our knowledge of infant nutrition as it is affected by complex oligosaccharides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal für Praktische Chemie/Chemiker-Zeitung 311 (1969), S. 370-378 
    ISSN: 0021-8383
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Carbonsäureester R—CH2—COOMe werden durch MeONO/NaOMe in aprotischen Lösungsmitteln α-nitrosiert; man erhält in Ausbeuten zwischen 14 und 34% die entsprechenden α-Oximinocarbonsäureester. α-Verzweigte Carbonsäureester werden durch MeONO/NaOMe nitrosierend gespalten: Die primär gebildeten Ketoxime lassen sich wegen des Auftretens von Folgereaktionen nur in Ausbeuten unter 10% isolieren.
    Additional Material: 6 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-07-01
    Description: Research on human milk oligosaccharides (HMOs) has received much attention in recent years. However, it started about a century ago with the observation that oligosaccharides might be growth factors for a so-called bifidus flora in breast-fed infants and extends to the recent finding of cell adhesion molecules in human milk. The latter are involved in inflammatory events recognizing carbohydrate sequences that also can be found in human milk. The similarities between epithelial cell surface carbohydrates and oligosaccharides in human milk strengthen the idea that specific interactions of those oligosaccharides with pathogenic microorganisms do occur preventing the attachment of microbes to epithelial cells. HMOs may act as soluble receptors for different pathogens, thus increasing the resistance of breast-fed infants. However, we need to know more about the metabolism of oligosaccharides in the gastrointestinal tract. How far are oligosaccharides degraded by intestinal enzymes and does oligosaccharide processing (e.g. degradation, synthesis, and elongation of core structures) occur in intestinal epithelial cells? Further research on HMOs is certainly needed to increase our knowledge of infant nutrition as it is affected by complex oligosaccharides.
    Print ISSN: 0199-9885
    Electronic ISSN: 1545-4312
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...